Abstract:Large Language Models (LLMs) have demonstrated remarkable capabilities in language understanding and generation. Advanced utilization of the knowledge embedded in LLMs for automated annotation has consistently been explored. This study proposed to develop an emotion lexicon for Cantonese, a low-resource language, through collaborative efforts between LLM and human annotators. By integrating emotion labels provided by LLM and human annotators, the study leveraged existing linguistic resources including lexicons in other languages and local forums to construct a Cantonese emotion lexicon enriched with colloquial expressions. The consistency of the proposed emotion lexicon in emotion extraction was assessed through modification and utilization of three distinct emotion text datasets. This study not only validates the efficacy of the constructed lexicon but also emphasizes that collaborative annotation between human and artificial intelligence can significantly enhance the quality of emotion labels, highlighting the potential of such partnerships in facilitating natural language processing tasks for low-resource languages.
Abstract:The proliferation of rumors on social media platforms during significant events, such as the US elections and the COVID-19 pandemic, has a profound impact on social stability and public health. Existing approaches for rumor detection primarily rely on propagation graphs to enhance model effectiveness. However, the presence of noisy and irrelevant structures during the propagation process limits the efficacy of these approaches. To tackle this issue, techniques such as weight adjustment and data augmentation have been proposed. However, these techniques heavily depend on rich original propagation structures, thus hindering performance when dealing with rumors that lack sufficient propagation information in the early propagation stages. In this paper, we propose Key Propagation Graph Generator (KPG), a novel reinforcement learning-based rumor detection framework that generates contextually coherent and informative propagation patterns for events with insufficient topology information, while also identifies indicative substructures for events with redundant and noisy propagation structures. KPG consists of two key components: the Candidate Response Generator (CRG) and the Ending Node Selector (ENS). CRG learns the latent distribution from refined propagation patterns, filtering out noise and generating new candidates for ENS. Simultaneously, ENS identifies the most influential substructures within propagation graphs and generates training data for CRG. Moreover, we introduce an end-to-end framework that utilizes rewards to guide the entire training process via a pre-trained graph neural network. Extensive experiments conducted on four datasets demonstrate the superiority of our KPG compared to the state-of-the-art approaches.