Abstract:The task of text-to-image generation has encountered significant challenges when applied to literary works, especially poetry. Poems are a distinct form of literature, with meanings that frequently transcend beyond the literal words. To address this shortcoming, we propose a PoemToPixel framework designed to generate images that visually represent the inherent meanings of poems. Our approach incorporates the concept of prompt tuning in our image generation framework to ensure that the resulting images closely align with the poetic content. In addition, we propose the PoeKey algorithm, which extracts three key elements in the form of emotions, visual elements, and themes from poems to form instructions which are subsequently provided to a diffusion model for generating corresponding images. Furthermore, to expand the diversity of the poetry dataset across different genres and ages, we introduce MiniPo, a novel multimodal dataset comprising 1001 children's poems and images. Leveraging this dataset alongside PoemSum, we conducted both quantitative and qualitative evaluations of image generation using our PoemToPixel framework. This paper demonstrates the effectiveness of our approach and offers a fresh perspective on generating images from literary sources.
Abstract:The rapid development of Large Multimodal Models (LMMs) has significantly advanced multimodal understanding by harnessing the language abilities of Large Language Models (LLMs) and integrating modality-specific encoders. However, LMMs are plagued by hallucinations that limit their reliability and adoption. While traditional methods to detect and mitigate these hallucinations often involve costly training or rely heavily on external models, recent approaches utilizing internal model features present a promising alternative. In this paper, we critically assess the limitations of the state-of-the-art training-free technique, the logit lens, in handling generalized visual hallucinations. We introduce a refined method that leverages contextual token embeddings from middle layers of LMMs. This approach significantly improves hallucination detection and grounding across diverse categories, including actions and OCR, while also excelling in tasks requiring contextual understanding, such as spatial relations and attribute comparison. Our novel grounding technique yields highly precise bounding boxes, facilitating a transition from Zero-Shot Object Segmentation to Grounded Visual Question Answering. Our contributions pave the way for more reliable and interpretable multimodal models.
Abstract:Accurately attributing answer text to its source document is crucial for developing a reliable question-answering system. However, attribution for long documents remains largely unexplored. Post-hoc attribution systems are designed to map answer text back to the source document, yet the granularity of this mapping has not been addressed. Furthermore, a critical question arises: What precisely should be attributed, with an emphasis on identifying the information units within an answer that necessitate grounding? In this paper, we propose and investigate a novel approach to the factual decomposition of generated answers for attribution, employing template-based in-context learning. To accomplish this, we utilize the question and integrate negative sampling during few-shot in-context learning for decomposition. This approach enhances the semantic understanding of both abstractive and extractive answers. We examine the impact of answer decomposition by providing a thorough examination of various attribution approaches, ranging from retrieval-based techniques to LLM-based attributors.
Abstract:Retrieval augmented generation (RAG) with large language models (LLMs) for Question Answering (QA) entails furnishing relevant context within the prompt to facilitate the LLM in answer generation. During the generation, inaccuracies or hallucinations frequently occur due to two primary factors: inadequate or distracting context in the prompts, and the inability of LLMs to effectively reason through the facts. In this paper, we investigate whether providing aligned context via a carefully selected passage sequence leads to better answer generation by the LLM for multi-hop QA. We introduce, "GenSco", a novel approach of selecting passages based on the predicted decomposition of the multi-hop questions}. The framework consists of two distinct LLMs: (i) Generator LLM, which is used for question decomposition and final answer generation; (ii) an auxiliary open-sourced LLM, used as the scorer, to semantically guide the Generator for passage selection. The generator is invoked only once for the answer generation, resulting in a cost-effective and efficient approach. We evaluate on three broadly established multi-hop question answering datasets: 2WikiMultiHop, Adversarial HotPotQA and MuSiQue and achieve an absolute gain of $15.1$ and $5.9$ points in Exact Match score with respect to the best performing baselines over MuSiQue and 2WikiMultiHop respectively.
Abstract:Referring Expression Segmentation (RES) aims to provide a segmentation mask of the target object in an image referred to by the text (i.e., referring expression). Existing methods require large-scale mask annotations. Moreover, such approaches do not generalize well to unseen/zero-shot scenarios. To address the aforementioned issues, we propose a weakly-supervised bootstrapping architecture for RES with several new algorithmic innovations. To the best of our knowledge, ours is the first approach that considers only a fraction of both mask and box annotations (shown in Figure 1 and Table 1) for training. To enable principled training of models in such low-annotation settings, improve image-text region-level alignment, and further enhance spatial localization of the target object in the image, we propose Cross-modal Fusion with Attention Consistency module. For automatic pseudo-labeling of unlabeled samples, we introduce a novel Mask Validity Filtering routine based on a spatially aware zero-shot proposal scoring approach. Extensive experiments show that with just 30% annotations, our model SafaRi achieves 59.31 and 48.26 mIoUs as compared to 58.93 and 48.19 mIoUs obtained by the fully-supervised SOTA method SeqTR respectively on RefCOCO+@testA and RefCOCO+testB datasets. SafaRi also outperforms SeqTR by 11.7% (on RefCOCO+testA) and 19.6% (on RefCOCO+testB) in a fully-supervised setting and demonstrates strong generalization capabilities in unseen/zero-shot tasks.
Abstract:Attributing answer text to its source document for information-seeking questions is crucial for building trustworthy, reliable, and accountable systems. We formulate a new task of post-hoc answer attribution for long document comprehension (LDC). Owing to the lack of long-form abstractive and information-seeking LDC datasets, we refactor existing datasets to assess the strengths and weaknesses of existing retrieval-based and proposed answer decomposition and textual entailment-based optimal selection attribution systems for this task. We throw light on the limitations of existing datasets and the need for datasets to assess the actual performance of systems on this task.
Abstract:With the enhancement in the field of generative artificial intelligence (AI), contextual question answering has become extremely relevant. Attributing model generations to the input source document is essential to ensure trustworthiness and reliability. We observe that when large language models (LLMs) are used for contextual question answering, the output answer often consists of text copied verbatim from the input prompt which is linked together with "glue text" generated by the LLM. Motivated by this, we propose that LLMs have an inherent awareness from where the text was copied, likely captured in the hidden states of the LLM. We introduce a novel method for attribution in contextual question answering, leveraging the hidden state representations of LLMs. Our approach bypasses the need for extensive model retraining and retrieval model overhead, offering granular attributions and preserving the quality of generated answers. Our experimental results demonstrate that our method performs on par or better than GPT-4 at identifying verbatim copied segments in LLM generations and in attributing these segments to their source. Importantly, our method shows robust performance across various LLM architectures, highlighting its broad applicability. Additionally, we present Verifiability-granular, an attribution dataset which has token level annotations for LLM generations in the contextual question answering setup.
Abstract:We investigate how hallucination in large language models (LLM) is characterized in peer-reviewed literature using a critical examination of 103 publications across NLP research. Through a comprehensive review of sociological and technological literature, we identify a lack of agreement with the term `hallucination.' Additionally, we conduct a survey with 171 practitioners from the field of NLP and AI to capture varying perspectives on hallucination. Our analysis underscores the necessity for explicit definitions and frameworks outlining hallucination within NLP, highlighting potential challenges, and our survey inputs provide a thematic understanding of the influence and ramifications of hallucination in society.
Abstract:Social media advertisements are key for brand marketing, aiming to attract consumers with captivating captions and pictures or logos. While previous research has focused on generating captions for general images, incorporating brand personalities into social media captioning remains unexplored. Brand personalities are shown to be affecting consumers' behaviours and social interactions and thus are proven to be a key aspect of marketing strategies. Current open-source multimodal LLMs are not directly suited for this task. Hence, we propose a pipeline solution to assist brands in creating engaging social media captions that align with the image and the brand personalities. Our architecture is based on two parts: a the first part contains an image captioning model that takes in an image that the brand wants to post online and gives a plain English caption; b the second part takes in the generated caption along with the target brand personality and outputs a catchy personality-aligned social media caption. Along with brand personality, our system also gives users the flexibility to provide hashtags, Instagram handles, URLs, and named entities they want the caption to contain, making the captions more semantically related to the social media handles. Comparative evaluations against various baselines demonstrate the effectiveness of our approach, both qualitatively and quantitatively.
Abstract:We address the task of evidence retrieval for long document question answering, which involves locating relevant paragraphs within a document to answer a question. We aim to assess the applicability of large language models (LLMs) in the task of zero-shot long document evidence retrieval, owing to their unprecedented performance across various NLP tasks. However, currently the LLMs can consume limited context lengths as input, thus providing document chunks as inputs might overlook the global context while missing out on capturing the inter-segment dependencies. Moreover, directly feeding the large input sets can incur significant computational costs, particularly when processing the entire document (and potentially incurring monetary expenses with enterprise APIs like OpenAI's GPT variants). To address these challenges, we propose a suite of techniques that exploit the discourse structure commonly found in documents. By utilizing this structure, we create a condensed representation of the document, enabling a more comprehensive understanding and analysis of relationships between different parts. We retain $99.6\%$ of the best zero-shot approach's performance, while processing only $26\%$ of the total tokens used by the best approach in the information seeking evidence retrieval setup. We also show how our approach can be combined with \textit{self-ask} reasoning agent to achieve best zero-shot performance in complex multi-hop question answering, just $\approx 4\%$ short of zero-shot performance using gold evidence.