Abstract:3D Gaussian Splatting (3DGS) has recently emerged as a state-of-the-art 3D reconstruction and rendering technique due to its high-quality results and fast training and rendering time. However, pixels covered by the same Gaussian are always shaded in the same color up to a Gaussian falloff scaling factor. Furthermore, the finest geometric detail any individual Gaussian can represent is a simple ellipsoid. These properties of 3DGS greatly limit the expressivity of individual Gaussian primitives. To address these issues, we draw inspiration from texture and alpha mapping in traditional graphics and integrate it with 3DGS. Specifically, we propose a new generalized Gaussian appearance representation that augments each Gaussian with alpha~(A), RGB, or RGBA texture maps to model spatially varying color and opacity across the extent of each Gaussian. As such, each Gaussian can represent a richer set of texture patterns and geometric structures, instead of just a single color and ellipsoid as in naive Gaussian Splatting. Surprisingly, we found that the expressivity of Gaussians can be greatly improved by using alpha-only texture maps, and further augmenting Gaussians with RGB texture maps achieves the highest expressivity. We validate our method on a wide variety of standard benchmark datasets and our own custom captures at both the object and scene levels. We demonstrate image quality improvements over existing methods while using a similar or lower number of Gaussians.
Abstract:Neural Radiance Fields (NeRF) have demonstrated exceptional capabilities in reconstructing complex scenes with high fidelity. However, NeRF's view dependency can only handle low-frequency reflections. It falls short when handling complex planar reflections, often interpreting them as erroneous scene geometries and leading to duplicated and inaccurate scene representations. To address this challenge, we introduce a reflection-aware NeRF that jointly models planar reflectors, such as windows, and explicitly casts reflected rays to capture the source of the high-frequency reflections. We query a single radiance field to render the primary color and the source of the reflection. We propose a sparse edge regularization to help utilize the true sources of reflections for rendering planar reflections rather than creating a duplicate along the primary ray at the same depth. As a result, we obtain accurate scene geometry. Rendering along the primary ray results in a clean, reflection-free view, while explicitly rendering along the reflected ray allows us to reconstruct highly detailed reflections. Our extensive quantitative and qualitative evaluations of real-world datasets demonstrate our method's enhanced performance in accurately handling reflections.
Abstract:We introduce a novel method for dynamic free-view synthesis of an ambient scenes from a monocular capture bringing a immersive quality to the viewing experience. Our method builds upon the recent advancements in 3D Gaussian Splatting (3DGS) that can faithfully reconstruct complex static scenes. Previous attempts to extend 3DGS to represent dynamics have been confined to bounded scenes or require multi-camera captures, and often fail to generalize to unseen motions, limiting their practical application. Our approach overcomes these constraints by leveraging the periodicity of ambient motions to learn the motion trajectory model, coupled with careful regularization. We also propose important practical strategies to improve the visual quality of the baseline 3DGS static reconstructions and to improve memory efficiency critical for GPU-memory intensive learning. We demonstrate high-quality photorealistic novel view synthesis of several ambient natural scenes with intricate textures and fine structural elements.
Abstract:Neural Radiance Field (NeRF) is a representation for 3D reconstruction from multi-view images. Despite some recent work showing preliminary success in editing a reconstructed NeRF with diffusion prior, they remain struggling to synthesize reasonable geometry in completely uncovered regions. One major reason is the high diversity of synthetic contents from the diffusion model, which hinders the radiance field from converging to a crisp and deterministic geometry. Moreover, applying latent diffusion models on real data often yields a textural shift incoherent to the image condition due to auto-encoding errors. These two problems are further reinforced with the use of pixel-distance losses. To address these issues, we propose tempering the diffusion model's stochasticity with per-scene customization and mitigating the textural shift with masked adversarial training. During the analyses, we also found the commonly used pixel and perceptual losses are harmful in the NeRF inpainting task. Through rigorous experiments, our framework yields state-of-the-art NeRF inpainting results on various real-world scenes. Project page: https://hubert0527.github.io/MALD-NeRF
Abstract:While numerous 3D reconstruction and novel-view synthesis methods allow for photorealistic rendering of a scene from multi-view images easily captured with consumer cameras, they bake illumination in their representations and fall short of supporting advanced applications like material editing, relighting, and virtual object insertion. The reconstruction of physically based material properties and lighting via inverse rendering promises to enable such applications. However, most inverse rendering techniques require high dynamic range (HDR) images as input, a setting that is inaccessible to most users. We present a method that recovers the physically based material properties and spatially-varying HDR lighting of a scene from multi-view, low-dynamic-range (LDR) images. We model the LDR image formation process in our inverse rendering pipeline and propose a novel optimization strategy for material, lighting, and a camera response model. We evaluate our approach with synthetic and real scenes compared to the state-of-the-art inverse rendering methods that take either LDR or HDR input. Our method outperforms existing methods taking LDR images as input, and allows for highly realistic relighting and object insertion.
Abstract:We present an approach to generate a 360-degree view of a person with a consistent, high-resolution appearance from a single input image. NeRF and its variants typically require videos or images from different viewpoints. Most existing approaches taking monocular input either rely on ground-truth 3D scans for supervision or lack 3D consistency. While recent 3D generative models show promise of 3D consistent human digitization, these approaches do not generalize well to diverse clothing appearances, and the results lack photorealism. Unlike existing work, we utilize high-capacity 2D diffusion models pretrained for general image synthesis tasks as an appearance prior of clothed humans. To achieve better 3D consistency while retaining the input identity, we progressively synthesize multiple views of the human in the input image by inpainting missing regions with shape-guided diffusion conditioned on silhouette and surface normal. We then fuse these synthesized multi-view images via inverse rendering to obtain a fully textured high-resolution 3D mesh of the given person. Experiments show that our approach outperforms prior methods and achieves photorealistic 360-degree synthesis of a wide range of clothed humans with complex textures from a single image.
Abstract:Novel view synthesis from a single image has been a cornerstone problem for many Virtual Reality applications that provide immersive experiences. However, most existing techniques can only synthesize novel views within a limited range of camera motion or fail to generate consistent and high-quality novel views under significant camera movement. In this work, we propose a pose-guided diffusion model to generate a consistent long-term video of novel views from a single image. We design an attention layer that uses epipolar lines as constraints to facilitate the association between different viewpoints. Experimental results on synthetic and real-world datasets demonstrate the effectiveness of the proposed diffusion model against state-of-the-art transformer-based and GAN-based approaches.
Abstract:We present an algorithm for reconstructing the radiance field of a large-scale scene from a single casually captured video. The task poses two core challenges. First, most existing radiance field reconstruction approaches rely on accurate pre-estimated camera poses from Structure-from-Motion algorithms, which frequently fail on in-the-wild videos. Second, using a single, global radiance field with finite representational capacity does not scale to longer trajectories in an unbounded scene. For handling unknown poses, we jointly estimate the camera poses with radiance field in a progressive manner. We show that progressive optimization significantly improves the robustness of the reconstruction. For handling large unbounded scenes, we dynamically allocate new local radiance fields trained with frames within a temporal window. This further improves robustness (e.g., performs well even under moderate pose drifts) and allows us to scale to large scenes. Our extensive evaluation on the Tanks and Temples dataset and our collected outdoor dataset, Static Hikes, show that our approach compares favorably with the state-of-the-art.
Abstract:Dynamic radiance field reconstruction methods aim to model the time-varying structure and appearance of a dynamic scene. Existing methods, however, assume that accurate camera poses can be reliably estimated by Structure from Motion (SfM) algorithms. These methods, thus, are unreliable as SfM algorithms often fail or produce erroneous poses on challenging videos with highly dynamic objects, poorly textured surfaces, and rotating camera motion. We address this robustness issue by jointly estimating the static and dynamic radiance fields along with the camera parameters (poses and focal length). We demonstrate the robustness of our approach via extensive quantitative and qualitative experiments. Our results show favorable performance over the state-of-the-art dynamic view synthesis methods.
Abstract:Volumetric scene representations enable photorealistic view synthesis for static scenes and form the basis of several existing 6-DoF video techniques. However, the volume rendering procedures that drive these representations necessitate careful trade-offs in terms of quality, rendering speed, and memory efficiency. In particular, existing methods fail to simultaneously achieve real-time performance, small memory footprint, and high-quality rendering for challenging real-world scenes. To address these issues, we present HyperReel -- a novel 6-DoF video representation. The two core components of HyperReel are: (1) a ray-conditioned sample prediction network that enables high-fidelity, high frame rate rendering at high resolutions and (2) a compact and memory efficient dynamic volume representation. Our 6-DoF video pipeline achieves the best performance compared to prior and contemporary approaches in terms of visual quality with small memory requirements, while also rendering at up to 18 frames-per-second at megapixel resolution without any custom CUDA code.