Abstract:In the realm of event prediction, temporal knowledge graph forecasting (TKGF) stands as a pivotal technique. Previous approaches face the challenges of not utilizing experience during testing and relying on a single short-term history, which limits adaptation to evolving data. In this paper, we introduce the Online Neural-Symbolic Event Prediction (ONSEP) framework, which innovates by integrating dynamic causal rule mining (DCRM) and dual history augmented generation (DHAG). DCRM dynamically constructs causal rules from real-time data, allowing for swift adaptation to new causal relationships. In parallel, DHAG merges short-term and long-term historical contexts, leveraging a bi-branch approach to enrich event prediction. Our framework demonstrates notable performance enhancements across diverse datasets, with significant Hit@k (k=1,3,10) improvements, showcasing its ability to augment large language models (LLMs) for event prediction without necessitating extensive retraining. The ONSEP framework not only advances the field of TKGF but also underscores the potential of neural-symbolic approaches in adapting to dynamic data environments.
Abstract:Identifying whether an artwork was used to train a diffusion model is an important research topic, given the rising popularity of AI-generated art and the associated copyright concerns. The work approaches this problem from the membership inference attack (MIA) perspective. We first identify the limitations of applying existing MIA methods for copyright protection: the required access of internal U-nets and the choice of non-member datasets for evaluation. To address the above problems, we introduce a novel black-box membership inference attack method that operates without needing access to the model's internal U-net. We then construct a DALL-E generated dataset for a more comprehensive evaluation. We validate our method across various setups, and our experimental results outperform previous works.
Abstract:In complex reinforcement learning (RL) problems, policies with similar rewards may have substantially different behaviors. It remains a fundamental challenge to optimize rewards while also discovering as many diverse strategies as possible, which can be crucial in many practical applications. Our study examines two design choices for tackling this challenge, i.e., diversity measure and computation framework. First, we find that with existing diversity measures, visually indistinguishable policies can still yield high diversity scores. To accurately capture the behavioral difference, we propose to incorporate the state-space distance information into the diversity measure. In addition, we examine two common computation frameworks for this problem, i.e., population-based training (PBT) and iterative learning (ITR). We show that although PBT is the precise problem formulation, ITR can achieve comparable diversity scores with higher computation efficiency, leading to improved solution quality in practice. Based on our analysis, we further combine ITR with two tractable realizations of the state-distance-based diversity measures and develop a novel diversity-driven RL algorithm, State-based Intrinsic-reward Policy Optimization (SIPO), with provable convergence properties. We empirically examine SIPO across three domains from robot locomotion to multi-agent games. In all of our testing environments, SIPO consistently produces strategically diverse and human-interpretable policies that cannot be discovered by existing baselines.
Abstract:This paper presents the design of a 6-DOF all-terrain micro aerial vehicle and two control strategies for multimodal flight, which are experimentally validated. The micro aerial vehicle is propelled by four motors and controlled by a single servo for the control of the cycloidal rotors(cyclorotors) speed and lift direction. Despite the addition of the servo, the system remains underactuated. To address the traditional underactuation problem of cycloidal rotor aircraft, we increase the number of control variables. We propose a PID and a nonlinear model predictive control (NMPC) framework to tackle the model's nonlinearities and achieve control of attitude, position, and their derivatives.Experimental results demonstrate the effectiveness of the proposed multimodal control strategy for 6-DOF all-terrain micro aerial vehicles. The vehicle can operate in aerial, terrestrial, and aquatic modes and can adapt to different terrains and environmental conditions. Our approach enhances the vehicle's performance in each mode of operation, and the results show the advantages of the proposed strategy compared to other control strategies.
Abstract:Parkinson's Disease (PD) is a progressive nervous system disorder that has affected more than 5.8 million people, especially the elderly. Due to the complexity of its symptoms and its similarity to other neurological disorders, early detection requires neurologists or PD specialists to be involved, which is not accessible to most old people. Therefore, we integrate smart mobile devices with AI technologies. In this paper, we introduce the framework of our developed PD early detection system which combines different tasks evaluating both motor and non-motor symptoms. With the developed model, we help users detect PD punctually in non-clinical settings and figure out their most severe symptoms. The results are expected to be further used for PD rehabilitation guidance and detection of other neurological disorders.
Abstract:This paper introduces a structure-deformable land-air robot which possesses both excellent ground driving and flying ability, with smooth switching mechanism between two modes. The elaborate coupled dynamics model of the proposed robot is established, including rotors, chassis, especially the deformable structures. Furthermore, taking fusion locomotion and complex near-ground situations into consideration, a model based controller is designed for landing and mode switching under various harsh conditions, in which we realise the cooperation between fused two motion modes. The entire system is implemented in ADAMS/Simulink simulation and in practical. We conduct experiments under various complex scenarios. The results show our robot can accomplish land-air switching swiftly and smoothly, and the designed controller can effectively improve the landing flexibility and reliability.
Abstract:Reinforcement learning (RL) has exceeded human performance in many synthetic settings such as video games and Go. However, real-world deployment of end-to-end RL models is less common, as RL models can be very sensitive to slight perturbation of the environment. The robust Markov decision process (MDP) framework -- in which the transition probabilities belong to an uncertainty set around a nominal model -- provides one way to develop robust models. While previous analysis shows RL algorithms are effective assuming access to a generative model, it remains unclear whether RL can be efficient under a more realistic online setting, which requires a careful balance between exploration and exploitation. In this work, we consider online robust MDP by interacting with an unknown nominal system. We propose a robust optimistic policy optimization algorithm that is provably efficient. To address the additional uncertainty caused by an adversarial environment, our model features a new optimistic update rule derived via Fenchel conjugates. Our analysis establishes the first regret bound for online robust MDPs.
Abstract:Kripke models are useful to express static knowledge or belief. On the other hand, action models describe information flow and dynamic knowledge or belief. The technique of refinement partition has been used to find the smallest Kripke model under bisimulation, which is sufficient and necessary for the semantic equivalence of Kripke models. In this paper, we generalize refinement partition to action models to find the smallest action model under propositional action emulation, which is sufficient for the semantic equivalence of action models, and sufficient and necessary if the action models are required to be propositional.
Abstract:Statistic modeling and data-driven learning are the two vital fields that attract many attentions. Statistic models intend to capture and interpret the relationships among variables, while data-based learning attempt to extract information directly from the data without pre-processing through complex models. Given the extensive studies in both fields, a subtle issue is how to properly integrate data based methods with existing knowledge or models. In this paper, based on the time series data, we propose two different directions to integrate the two, a decomposition-based method and a method exploiting the statistic extraction of data features. The first one decomposes the data into linear stable, nonlinear stable and unstable parts, where suitable statistical models are used for the linear stable and nonlinear stable parts while the appropriate machine learning tools are used for the unstable parts. The second one applies statistic models to extract statistics features of data and feed them as additional inputs into the machine learning platform for training. The most critical and challenging thing is how to determine and extract the valuable information from mathematical or statistical models to boost the performance of machine learning algorithms. We evaluate the proposal using time series data with varying degrees of stability. Performance results show that both methods can outperform existing schemes that use models and learning separately, and the improvements can be over 60%. Both our proposed methods are promising in bridging the gap between model-based and data-driven schemes and integrating the two to provide an overall higher learning performance.
Abstract:As architecture, system, data management, and machine learning communities pay greater attention to innovative big data and data-driven artificial intelligence (in short, AI) algorithms, architecture, and systems, the pressure of benchmarking rises. However, complexity, diversity, frequently changed workloads, and rapid evolution of big data, especially AI systems raise great challenges in benchmarking. First, for the sake of conciseness, benchmarking scalability, portability cost, reproducibility, and better interpretation of performance data, we need understand what are the abstractions of frequently-appearing units of computation, which we call dwarfs, among big data and AI workloads. Second, for the sake of fairness, the benchmarks must include diversity of data and workloads. Third, for co-design of software and hardware, the benchmarks should be consistent across different communities. Other than creating a new benchmark or proxy for every possible workload, we propose using dwarf-based benchmarks--the combination of eight dwarfs--to represent diversity of big data and AI workloads. The current version--BigDataBench 4.0 provides 13 representative real-world data sets and 47 big data and AI benchmarks, including seven workload types: online service, offline analytics, graph analytics, AI, data warehouse, NoSQL, and streaming. BigDataBench 4.0 is publicly available from http://prof.ict.ac.cn/BigDataBench. Also, for the first time, we comprehensively characterize the benchmarks of seven workload types in BigDataBench 4.0 in addition to traditional benchmarks like SPECCPU, PARSEC and HPCC in a hierarchical manner and drill down on five levels, using the Top-Down analysis from an architecture perspective.