Abstract:General-purpose object placement is a fundamental capability of an intelligent generalist robot, i.e., being capable of rearranging objects following human instructions even in novel environments. To achieve this, we break the rearrangement down into three parts, including object localization, goal imagination and robot control, and propose a framework named SPORT. SPORT leverages pre-trained large vision models for broad semantic reasoning about objects, and learns a diffusion-based 3D pose estimator to ensure physically-realistic results. Only object types (to be moved or reference) are communicated between these two parts, which brings two benefits. One is that we can fully leverage the powerful ability of open-set object localization and recognition since no specific fine-tuning is needed for robotic scenarios. Furthermore, the diffusion-based estimator only need to "imagine" the poses of the moving and reference objects after the placement, while no necessity for their semantic information. Thus the training burden is greatly reduced and no massive training is required. The training data for goal pose estimation is collected in simulation and annotated with GPT-4. A set of simulation and real-world experiments demonstrate the potential of our approach to accomplish general-purpose object rearrangement, placing various objects following precise instructions.
Abstract:Machine learning techniques have been successfully used in probabilistic wind power forecasting. However, the issue of missing values within datasets due to sensor failure, for instance, has been overlooked for a long time. Although it is natural to consider addressing this issue by imputing missing values before model estimation and forecasting, we suggest treating missing values and forecasting targets indifferently and predicting all unknown values simultaneously based on observations. In this paper, we offer an efficient probabilistic forecasting approach by estimating the joint distribution of features and targets based on a generative model. It is free of preprocessing, and thus avoids introducing potential errors. Compared with the traditional "impute, then predict" pipeline, the proposed approach achieves better performance in terms of continuous ranked probability score.
Abstract:We present a data-driven approach for probabilistic wind power forecasting based on conditional normalizing flow (CNF). In contrast with the existing, this approach is distribution-free (as for non-parametric and quantile-based approaches) and can directly yield continuous probability densities, hence avoiding quantile crossing. It relies on a base distribution and a set of bijective mappings. Both the shape parameters of the base distribution and the bijective mappings are approximated with neural networks. Spline-based conditional normalizing flow is considered owing to its non-affine characteristics. Over the training phase, the model sequentially maps input examples onto samples of base distribution, given the conditional contexts, where parameters are estimated through maximum likelihood. To issue probabilistic forecasts, one eventually maps samples of the base distribution into samples of a desired distribution. Case studies based on open datasets validate the effectiveness of the proposed model, and allows us to discuss its advantages and caveats with respect to the state of the art.
Abstract:Continuous-variable quantum key distribution (CV QKD) with discrete modulation has attracted increasing attention due to its experimental simplicity, lower-cost implementation and compatibility with classical optical communication. Correspondingly, some novel numerical methods have been proposed to analyze the security of these protocols against collective attacks, which promotes key rates over one hundred kilometers of fiber distance. However, numerical methods are limited by their calculation time and resource consumption, for which they cannot play more roles on mobile platforms in quantum networks. To improve this issue, a neural network model predicting key rates in nearly real time has been proposed previously. Here, we go further and show a neural network model combined with Bayesian optimization. This model automatically designs the best architecture of neural network computing key rates in real time. We demonstrate our model with two variants of CV QKD protocols with quaternary modulation. The results show high reliability with secure probability as high as $99.15\%-99.59\%$, considerable tightness and high efficiency with speedup of approximately $10^7$ in both cases. This inspiring model enables the real-time computation of unstructured quantum key distribution protocols' key rate more automatically and efficiently, which has met the growing needs of implementing QKD protocols on moving platforms.
Abstract:User representation is essential for providing high-quality commercial services in industry. Universal user representation has received many interests recently, with which we can be free from the cumbersome work of training a specific model for each downstream application. In this paper, we attempt to improve universal user representation from two points of views. First, a contrastive self-supervised learning paradigm is presented to guide the representation model training. It provides a unified framework that allows for long-term or short-term interest representation learning in a data-driven manner. Moreover, a novel multi-interest extraction module is presented. The module introduces an interest dictionary to capture principal interests of the given user, and then generate his/her interest-oriented representations via behavior aggregation. Experimental results demonstrate the effectiveness and applicability of the learned user representations.
Abstract:User modeling is critical for developing personalized services in industry. A common way for user modeling is to learn user representations that can be distinguished by their interests or preferences. In this work, we focus on developing universal user representation model. The obtained universal representations are expected to contain rich information, and be applicable to various downstream applications without further modifications (e.g., user preference prediction and user profiling). Accordingly, we can be free from the heavy work of training task-specific models for every downstream task as in previous works. In specific, we propose Self-supervised User Modeling Network (SUMN) to encode behavior data into the universal representation. It includes two key components. The first one is a new learning objective, which guides the model to fully identify and preserve valuable user information under a self-supervised learning framework. The other one is a multi-hop aggregation layer, which benefits the model capacity in aggregating diverse behaviors. Extensive experiments on benchmark datasets show that our approach can outperform state-of-the-art unsupervised representation methods, and even compete with supervised ones.
Abstract:Transferring image-based object detectors to the domain of videos remains a challenging problem. Previous efforts mostly exploit optical flow to propagate features across frames, aiming to achieve a good trade-off between accuracy and efficiency. However, introducing an extra model to estimate optical flow would significantly increase the overall model size. The gap between optical flow and high-level features can also hinder it from establishing spatial correspondence accurately. Instead of relying on optical flow, this paper proposes a novel module called Progressive Sparse Local Attention (PSLA), which establishes the spatial correspondence between features across frames in a local region with progressive sparser stride and uses the correspondence to propagate features. Based on PSLA, Recursive Feature Updating (RFU) and Dense Feature Transforming (DFT) are proposed to model temporal appearance and enrich feature representation respectively in a novel video object detection framework. Experiments on ImageNet VID show that our method achieves the best accuracy compared to existing methods with smaller model size and acceptable runtime speed.
Abstract:Power systems are developing very fast nowadays, both in size and in complexity; this situation is a challenge for Early Event Detection (EED). This paper proposes a data- driven unsupervised learning method to handle this challenge. Specifically, the random matrix theories (RMTs) are introduced as the statistical foundations for random matrix models (RMMs); based on the RMMs, linear eigenvalue statistics (LESs) are defined via the test functions as the system indicators. By comparing the values of the LES between the experimental and the theoretical ones, the anomaly detection is conducted. Furthermore, we develop 3D power-map to visualize the LES; it provides a robust auxiliary decision-making mechanism to the operators. In this sense, the proposed method conducts EED with a pure statistical procedure, requiring no knowledge of system topologies, unit operation/control models, etc. The LES, as a key ingredient during this procedure, is a high dimensional indictor derived directly from raw data. As an unsupervised learning indicator, the LES is much more sensitive than the low dimensional indictors obtained from supervised learning. With the statistical procedure, the proposed method is universal and fast; moreover, it is robust against traditional EED challenges (such as error accumulations, spurious correlations, and even bad data in core area). Case studies, with both simulated data and real ones, validate the proposed method. To manage large-scale distributed systems, data fusion is mentioned as another data processing ingredient.