Abstract:With the contemporary digital technology approaching, deep neural networks are emerging as the foundational algorithm of the artificial intelligence boom. Whereas, the evolving social demands have been emphasizing the necessity of novel methodologies to substitute traditional neural networks. Concurrently, the advent of the post-Moore era has spurred the development of quantum-inspired neural networks with outstanding potentials at certain circumstances. Nonetheless, a definitive evaluating system with detailed metrics is tremendously vital and indispensable owing to the vague indicators in comparison between the novel and traditional deep learning models at present. Hence, to improve and evaluate the performances of the novel neural networks more comprehensively in complex and unpredictable environments, we propose two hybrid quantum-inspired neural networks which are rooted in residual and dense connections respectively for pattern recognitions with completeness representation theory for model assessment. Comparative analyses against pure classical models with detailed frameworks reveal that our hybrid models with lower parameter complexity not only match the generalization power of pure classical models, but also outperform them notably in resistance to parameter attacks with various asymmetric noises. Moreover, our hybrid models indicate unique superiority to prevent gradient explosion problems through theoretical argumentation. Eventually, We elaborate on the application scenarios where our hybrid models are applicable and efficient, which paves the way for their industrialization and commercialization.
Abstract:Neural networks have achieved impressive breakthroughs in both industry and academia. How to effectively develop neural networks on quantum computing devices is a challenging open problem. Here, we propose a new quantum neural network model for quantum neural computing using (classically-controlled) single-qubit operations and measurements on real-world quantum systems with naturally occurring environment-induced decoherence, which greatly reduces the difficulties of physical implementations. Our model circumvents the problem that the state-space size grows exponentially with the number of neurons, thereby greatly reducing memory requirements and allowing for fast optimization with traditional optimization algorithms. We benchmark our model for handwritten digit recognition and other nonlinear classification tasks. The results show that our model has an amazing nonlinear classification ability and robustness to noise. Furthermore, our model allows quantum computing to be applied in a wider context and inspires the earlier development of a quantum neural computer than standard quantum computers.
Abstract:Continuous-variable quantum key distribution (CV QKD) with discrete modulation has attracted increasing attention due to its experimental simplicity, lower-cost implementation and compatibility with classical optical communication. Correspondingly, some novel numerical methods have been proposed to analyze the security of these protocols against collective attacks, which promotes key rates over one hundred kilometers of fiber distance. However, numerical methods are limited by their calculation time and resource consumption, for which they cannot play more roles on mobile platforms in quantum networks. To improve this issue, a neural network model predicting key rates in nearly real time has been proposed previously. Here, we go further and show a neural network model combined with Bayesian optimization. This model automatically designs the best architecture of neural network computing key rates in real time. We demonstrate our model with two variants of CV QKD protocols with quaternary modulation. The results show high reliability with secure probability as high as $99.15\%-99.59\%$, considerable tightness and high efficiency with speedup of approximately $10^7$ in both cases. This inspiring model enables the real-time computation of unstructured quantum key distribution protocols' key rate more automatically and efficiently, which has met the growing needs of implementing QKD protocols on moving platforms.
Abstract:An increasing number of communication and computational schemes with quantum advantages have recently been proposed, which implies that quantum technology has fertile application prospects. However, demonstrating these schemes experimentally continues to be a central challenge because of the difficulty in preparing high-dimensional states or highly entangled states. In this study, we introduce and analyse a quantum coupon collector protocol by employing coherent states and simple linear optical elements, which was successfully demonstrated using realistic experimental equipment. We showed that our protocol can significantly reduce the number of samples needed to learn a specific set compared with the classical limit of the coupon collector problem. We also discuss the potential values and expansions of the quantum coupon collector by constructing a quantum blind box game. The information transmitted by the proposed game also broke the classical limit. These results strongly prove the advantages of quantum mechanics in machine learning and communication complexity.
Abstract:A new paradigm of quantum computing, namely, soft quantum computing, is proposed for nonclassical computation using real world quantum systems with naturally occurring environment-induced decoherence and dissipation. As a specific example of soft quantum computing, we suggest a quantum neural network, where the neurons connect pairwise via the "controlled Kraus operations", hoping to pave an easier and more realistic way to quantum artificial intelligence and even to better understanding certain functioning of the human brain. Our quantum neuron model mimics as much as possible the realistic neurons and meanwhile, uses quantum laws for processing information. The quantum features of the noisy neural network are uncovered by the presence of quantum discord and by non-commutability of quantum operations. We believe that our model puts quantum computing into a wider context and inspires the hope to build a soft quantum computer much earlier than the standard one.