Abstract:Machine learning techniques have been successfully used in probabilistic wind power forecasting. However, the issue of missing values within datasets due to sensor failure, for instance, has been overlooked for a long time. Although it is natural to consider addressing this issue by imputing missing values before model estimation and forecasting, we suggest treating missing values and forecasting targets indifferently and predicting all unknown values simultaneously based on observations. In this paper, we offer an efficient probabilistic forecasting approach by estimating the joint distribution of features and targets based on a generative model. It is free of preprocessing, and thus avoids introducing potential errors. Compared with the traditional "impute, then predict" pipeline, the proposed approach achieves better performance in terms of continuous ranked probability score.
Abstract:We present a data-driven approach for probabilistic wind power forecasting based on conditional normalizing flow (CNF). In contrast with the existing, this approach is distribution-free (as for non-parametric and quantile-based approaches) and can directly yield continuous probability densities, hence avoiding quantile crossing. It relies on a base distribution and a set of bijective mappings. Both the shape parameters of the base distribution and the bijective mappings are approximated with neural networks. Spline-based conditional normalizing flow is considered owing to its non-affine characteristics. Over the training phase, the model sequentially maps input examples onto samples of base distribution, given the conditional contexts, where parameters are estimated through maximum likelihood. To issue probabilistic forecasts, one eventually maps samples of the base distribution into samples of a desired distribution. Case studies based on open datasets validate the effectiveness of the proposed model, and allows us to discuss its advantages and caveats with respect to the state of the art.
Abstract:The location of broken insulators in aerial images is a challenging task. This paper, focusing on the self-blast glass insulator, proposes a deep learning solution. We address the broken insulators location problem as a low signal-noise-ratio image location framework with two modules: 1) object detection based on Fast R-CNN, and 2) classification of pixels based on U-net. A diverse aerial image set of some grid in China is tested to validated the proposed approach. Furthermore, a comparison is made among different methods and the result shows that our approach is accurate and real-time.
Abstract:Power systems are developing very fast nowadays, both in size and in complexity; this situation is a challenge for Early Event Detection (EED). This paper proposes a data- driven unsupervised learning method to handle this challenge. Specifically, the random matrix theories (RMTs) are introduced as the statistical foundations for random matrix models (RMMs); based on the RMMs, linear eigenvalue statistics (LESs) are defined via the test functions as the system indicators. By comparing the values of the LES between the experimental and the theoretical ones, the anomaly detection is conducted. Furthermore, we develop 3D power-map to visualize the LES; it provides a robust auxiliary decision-making mechanism to the operators. In this sense, the proposed method conducts EED with a pure statistical procedure, requiring no knowledge of system topologies, unit operation/control models, etc. The LES, as a key ingredient during this procedure, is a high dimensional indictor derived directly from raw data. As an unsupervised learning indicator, the LES is much more sensitive than the low dimensional indictors obtained from supervised learning. With the statistical procedure, the proposed method is universal and fast; moreover, it is robust against traditional EED challenges (such as error accumulations, spurious correlations, and even bad data in core area). Case studies, with both simulated data and real ones, validate the proposed method. To manage large-scale distributed systems, data fusion is mentioned as another data processing ingredient.