Abstract:Large Language Models (LLMs) have shown remarkable generalization capability with exceptional performance in various language modeling tasks. However, they still exhibit inherent limitations in precisely capturing and returning grounded knowledge. While existing work has explored utilizing knowledge graphs to enhance language modeling via joint training and customized model architectures, applying this to LLMs is problematic owing to their large number of parameters and high computational cost. In addition, how to leverage the pre-trained LLMs and avoid training a customized model from scratch remains an open question. In this work, we propose Graph Neural Prompting (GNP), a novel plug-and-play method to assist pre-trained LLMs in learning beneficial knowledge from KGs. GNP encompasses various designs, including a standard graph neural network encoder, a cross-modality pooling module, a domain projector, and a self-supervised link prediction objective. Extensive experiments on multiple datasets demonstrate the superiority of GNP on both commonsense and biomedical reasoning tasks across different LLM sizes and settings.
Abstract:METHODS: First, a set of evaluation criteria is designed based on a comprehensive literature review. Second, existing candidate criteria are optimized for using a Delphi method by five experts in medicine and engineering. Third, three clinical experts design a set of medical datasets to interact with LLMs. Finally, benchmarking experiments are conducted on the datasets. The responses generated by chatbots based on LLMs are recorded for blind evaluations by five licensed medical experts. RESULTS: The obtained evaluation criteria cover medical professional capabilities, social comprehensive capabilities, contextual capabilities, and computational robustness, with sixteen detailed indicators. The medical datasets include twenty-seven medical dialogues and seven case reports in Chinese. Three chatbots are evaluated, ChatGPT by OpenAI, ERNIE Bot by Baidu Inc., and Doctor PuJiang (Dr. PJ) by Shanghai Artificial Intelligence Laboratory. Experimental results show that Dr. PJ outperforms ChatGPT and ERNIE Bot in both multiple-turn medical dialogue and case report scenarios.
Abstract:Graphs are a ubiquitous data structure to model processes and relations in a wide range of domains. Examples include control-flow graphs in programs and semantic scene graphs in images. Identifying subgraph patterns in graphs is an important approach to understanding their structural properties. We propose a visual analytics system GraphQ to support human-in-the-loop, example-based, subgraph pattern search in a database containing many individual graphs. To support fast, interactive queries, we use graph neural networks (GNNs) to encode a graph as fixed-length latent vector representation, and perform subgraph matching in the latent space. Due to the complexity of the problem, it is still difficult to obtain accurate one-to-one node correspondences in the matching results that are crucial for visualization and interpretation. We, therefore, propose a novel GNN for node-alignment called NeuroAlign, to facilitate easy validation and interpretation of the query results. GraphQ provides a visual query interface with a query editor and a multi-scale visualization of the results, as well as a user feedback mechanism for refining the results with additional constraints. We demonstrate GraphQ through two example usage scenarios: analyzing reusable subroutines in program workflows and semantic scene graph search in images. Quantitative experiments show that NeuroAlign achieves 19-29% improvement in node-alignment accuracy compared to baseline GNN and provides up to 100x speedup compared to combinatorial algorithms. Our qualitative study with domain experts confirms the effectiveness for both usage scenarios.
Abstract:Unsupervised domain adaptation studies the problem of utilizing a relevant source domain with abundant labels to build predictive modeling for an unannotated target domain. Recent work observe that the popular adversarial approach of learning domain-invariant features is insufficient to achieve desirable target domain performance and thus introduce additional training constraints, e.g. cluster assumption. However, these approaches impose the constraints on source and target domains individually, ignoring the important interplay between them. In this work, we propose to enforce training constraints across domains using mixup formulation to directly address the generalization performance for target data. In order to tackle potentially huge domain discrepancy, we further propose a feature-level consistency regularizer to facilitate the inter-domain constraint. When adding intra-domain mixup and domain adversarial learning, our general framework significantly improves state-of-the-art performance on several important tasks from both image classification and human activity recognition.
Abstract:Modern audio source separation techniques rely on optimizing sequence model architectures such as, 1D-CNNs, on mixture recordings to generalize well to unseen mixtures. Specifically, recent focus is on time-domain based architectures such as Wave-U-Net which exploit temporal context by extracting multi-scale features. However, the optimality of the feature extraction process in these architectures has not been well investigated. In this paper, we examine and recommend critical architectural changes that forge an optimal multi-scale feature extraction process. To this end, we replace regular $1-$D convolutions with adaptive dilated convolutions that have innate capability of capturing increased context by using large temporal receptive fields. We also investigate the impact of dense connections on the extraction process that encourage feature reuse and better gradient flow. The dense connections between the downsampling and upsampling paths of a U-Net architecture capture multi-resolution information leading to improved temporal modelling. We evaluate the proposed approaches on the MUSDB test dataset. In addition to providing an improved performance over the state-of-the-art, we also provide insights on the impact of different architectural choices on complex data-driven solutions for source separation.
Abstract:State-of-the-art speaker diarization systems utilize knowledge from external data, in the form of a pre-trained distance metric, to effectively determine relative speaker identities to unseen data. However, much of recent focus has been on choosing the appropriate feature extractor, ranging from pre-trained $i-$vectors to representations learned via different sequence modeling architectures (e.g. 1D-CNNs, LSTMs, attention models), while adopting off-the-shelf metric learning solutions. In this paper, we argue that, regardless of the feature extractor, it is crucial to carefully design a metric learning pipeline, namely the loss function, the sampling strategy and the discrimnative margin parameter, for building robust diarization systems. Furthermore, we propose to adopt a fine-grained validation process to obtain a comprehensive evaluation of the generalization power of metric learning pipelines. To this end, we measure diarization performance across different language speakers, and variations in the number of speakers in a recording. Using empirical studies, we provide interesting insights into the effectiveness of different design choices and make recommendations.
Abstract:Modern data analysis pipelines are becoming increasingly complex due to the presence of multi-view information sources. While graphs are effective in modeling complex relationships, in many scenarios a single graph is rarely sufficient to succinctly represent all interactions, and hence multi-layered graphs have become popular. Though this leads to richer representations, extending solutions from the single-graph case is not straightforward. Consequently, there is a strong need for novel solutions to solve classical problems, such as node classification, in the multi-layered case. In this paper, we consider the problem of semi-supervised learning with multi-layered graphs. Though deep network embeddings, e.g. DeepWalk, are widely adopted for community discovery, we argue that feature learning with random node attributes, using graph neural networks, can be more effective. To this end, we propose to use attention models for effective feature learning, and develop two novel architectures, GrAMME-SG and GrAMME-Fusion, that exploit the inter-layer dependencies for building multi-layered graph embeddings. Using empirical studies on several benchmark datasets, we evaluate the proposed approaches and demonstrate significant performance improvements in comparison to state-of-the-art network embedding strategies. The results also show that using simple random features is an effective choice, even in cases where explicit node attributes are not available.
Abstract:In automatic speech processing systems, speaker diarization is a crucial front-end component to separate segments from different speakers. Inspired by the recent success of deep neural networks (DNNs) in semantic inferencing, triplet loss-based architectures have been successfully used for this problem. However, existing work utilizes conventional i-vectors as the input representation and builds simple fully connected networks for metric learning, thus not fully leveraging the modeling power of DNN architectures. This paper investigates the importance of learning effective representations from the sequences directly in metric learning pipelines for speaker diarization. More specifically, we propose to employ attention models to learn embeddings and the metric jointly in an end-to-end fashion. Experiments are conducted on the CALLHOME conversational speech corpus. The diarization results demonstrate that, besides providing a unified model, the proposed approach achieves improved performance when compared against existing approaches.
Abstract:With widespread adoption of electronic health records, there is an increased emphasis for predictive models that can effectively deal with clinical time-series data. Powered by Recurrent Neural Network (RNN) architectures with Long Short-Term Memory (LSTM) units, deep neural networks have achieved state-of-the-art results in several clinical prediction tasks. Despite the success of RNNs, its sequential nature prohibits parallelized computing, thus making it inefficient particularly when processing long sequences. Recently, architectures which are based solely on attention mechanisms have shown remarkable success in transduction tasks in NLP, while being computationally superior. In this paper, for the first time, we utilize attention models for clinical time-series modeling, thereby dispensing recurrence entirely. We develop the \textit{SAnD} (Simply Attend and Diagnose) architecture, which employs a masked, self-attention mechanism, and uses positional encoding and dense interpolation strategies for incorporating temporal order. Furthermore, we develop a multi-task variant of \textit{SAnD} to jointly infer models with multiple diagnosis tasks. Using the recent MIMIC-III benchmark datasets, we demonstrate that the proposed approach achieves state-of-the-art performance in all tasks, outperforming LSTM models and classical baselines with hand-engineered features.
Abstract:Building highly non-linear and non-parametric models is central to several state-of-the-art machine learning systems. Kernel methods form an important class of techniques that induce a reproducing kernel Hilbert space (RKHS) for inferring non-linear models through the construction of similarity functions from data. These methods are particularly preferred in cases where the training data sizes are limited and when prior knowledge of the data similarities is available. Despite their usefulness, they are limited by the computational complexity and their inability to support end-to-end learning with a task-specific objective. On the other hand, deep neural networks have become the de facto solution for end-to-end inference in several learning paradigms. In this article, we explore the idea of using deep architectures to perform kernel machine optimization, for both computational efficiency and end-to-end inferencing. To this end, we develop the DKMO (Deep Kernel Machine Optimization) framework, that creates an ensemble of dense embeddings using Nystrom kernel approximations and utilizes deep learning to generate task-specific representations through the fusion of the embeddings. Intuitively, the filters of the network are trained to fuse information from an ensemble of linear subspaces in the RKHS. Furthermore, we introduce the kernel dropout regularization to enable improved training convergence. Finally, we extend this framework to the multiple kernel case, by coupling a global fusion layer with pre-trained deep kernel machines for each of the constituent kernels. Using case studies with limited training data, and lack of explicit feature sources, we demonstrate the effectiveness of our framework over conventional model inferencing techniques.