Abstract:Asynchronous event sequence clustering aims to group similar event sequences in an unsupervised manner. Mixture models of temporal point processes have been proposed to solve this problem, but they often suffer from overfitting, leading to excessive cluster generation with a lack of diversity. To overcome these limitations, we propose a Bayesian mixture model of Temporal Point Processes with Determinantal Point Process prior (TP$^2$DP$^2$) and accordingly an efficient posterior inference algorithm based on conditional Gibbs sampling. Our work provides a flexible learning framework for event sequence clustering, enabling automatic identification of the potential number of clusters and accurate grouping of sequences with similar features. It is applicable to a wide range of parametric temporal point processes, including neural network-based models. Experimental results on both synthetic and real-world data suggest that our framework could produce moderately fewer yet more diverse mixture components, and achieve outstanding results across multiple evaluation metrics.
Abstract:Transformer plays a central role in many fundamental deep learning models, e.g., the ViT in computer vision and the BERT and GPT in natural language processing, whose effectiveness is mainly attributed to its multi-head attention (MHA) mechanism. In this study, we propose a simple and novel channel-wise sample permutation (CSP) operator, achieving a new structured MHA with fewer parameters and lower complexity. Given an input matrix, CSP circularly shifts the samples of different channels with various steps and then sorts grouped samples of each channel. This operator is equivalent to implicitly implementing cross-channel attention maps as permutation matrices, which achieves linear complexity and suppresses the risk of rank collapse when representing data. We replace the MHA of some representative models with CSP and test the CSP-based models in several discriminative tasks, including image classification and long sequence analysis. Experiments show that the CSP-based models achieve comparable or better performance with fewer parameters and lower computational costs than the classic Transformer and its state-of-the-art variants. The code is available at https://github.com/DaShenZi721/CSP.
Abstract:Predicting ground-state conformation from the corresponding molecular graph is crucial for many chemical applications, such as molecular modeling, molecular docking, and molecular property prediction. Recently, many learning-based methods have been proposed to replace time-consuming simulations for this task. However, these methods are often inefficient and sub-optimal as they merely rely on molecular graph information to make predictions from scratch. In this work, considering that molecular low-quality conformations are readily available, we propose a novel framework called ConfOpt to predict molecular ground-state conformation from the perspective of conformation optimization. Specifically, ConfOpt takes the molecular graph and corresponding low-quality 3D conformation as inputs, and then derives the ground-state conformation by iteratively optimizing the low-quality conformation under the guidance of the molecular graph. During training, ConfOpt concurrently optimizes the predicted atomic 3D coordinates and the corresponding interatomic distances, resulting in a strong predictive model. Extensive experiments demonstrate that ConfOpt significantly outperforms existing methods, thus providing a new paradigm for efficiently and accurately predicting molecular ground-state conformation.
Abstract:In the past few decades, polymers, high-molecular-weight compounds formed by bonding numerous identical or similar monomers covalently, have played an essential role in various scientific fields. In this context, accurate prediction of their properties is becoming increasingly crucial. Typically, the properties of a polymer, such as plasticity, conductivity, bio-compatibility, and so on, are highly correlated with its 3D structure. However, current methods for predicting polymer properties heavily rely on information from polymer SMILES sequences (P-SMILES strings) while ignoring crucial 3D structural information, leading to sub-optimal performance. In this work, we propose MMPolymer, a novel multimodal multitask pretraining framework incorporating both polymer 1D sequential information and 3D structural information to enhance downstream polymer property prediction tasks. Besides, to overcome the limited availability of polymer 3D data, we further propose the "Star Substitution" strategy to extract 3D structural information effectively. During pretraining, MMPolymer not only predicts masked tokens and recovers 3D coordinates but also achieves the cross-modal alignment of latent representation. Subsequently, we further fine-tune the pretrained MMPolymer for downstream polymer property prediction tasks in the supervised learning paradigm. Experimental results demonstrate that MMPolymer achieves state-of-the-art performance in various polymer property prediction tasks. Moreover, leveraging the pretrained MMPolymer and using only one modality (either P-SMILES string or 3D conformation) during fine-tuning can also surpass existing polymer property prediction methods, highlighting the exceptional capability of MMPolymer in polymer feature extraction and utilization. Our online platform for polymer property prediction is available at https://app.bohrium.dp.tech/mmpolymer.
Abstract:While following different technical routes, both low-rank and orthogonal adaptation techniques can efficiently adapt large-scale pre-training models in specific tasks or domains based on a small piece of trainable parameters. In this study, we bridge the gap between these two techniques, proposing a simple but effective adaptation method based on Householder reflections. Given a pre-trained model, our method fine-tunes its layers by multiplying each frozen weight matrix with an orthogonal matrix constructed by a chain of learnable Householder reflections (HRs). This HR-based orthogonal fine-tuning is equivalent to an adaptive low-rank adaptation. Moreover, we show that the orthogonality of the reflection planes corresponding to the HRs impacts the model capacity and regularity. The analysis motivates us to regularize the orthogonality of the HRs, leading to different implementations of the proposed Householder reflection adaptation (HRA) method. Compared with state-of-the-art methods, HRA achieves superior performance with fewer learnable parameters when adapting large language models and conditional image generators. The code is available at https://github.com/DaShenZi721/HRA
Abstract:As a promising individualized treatment effect (ITE) estimation method, counterfactual regression (CFR) maps individuals' covariates to a latent space and predicts their counterfactual outcomes. However, the selection bias between control and treatment groups often imbalances the two groups' latent distributions and negatively impacts this method's performance. In this study, we revisit counterfactual regression through the lens of information bottleneck and propose a novel learning paradigm called Gromov-Wasserstein information bottleneck (GWIB). In this paradigm, we learn CFR by maximizing the mutual information between covariates' latent representations and outcomes while penalizing the kernelized mutual information between the latent representations and the covariates. We demonstrate that the upper bound of the penalty term can be implemented as a new regularizer consisting of $i)$ the fused Gromov-Wasserstein distance between the latent representations of different groups and $ii)$ the gap between the transport cost generated by the model and the cross-group Gromov-Wasserstein distance between the latent representations and the covariates. GWIB effectively learns the CFR model through alternating optimization, suppressing selection bias while avoiding trivial latent distributions. Experiments on ITE estimation tasks show that GWIB consistently outperforms state-of-the-art CFR methods. To promote the research community, we release our project at https://github.com/peteryang1031/Causal-GWIB.
Abstract:As a significant step for human face modeling, editing, and generation, face landmarking aims at extracting facial keypoints from images. A generalizable face landmarker is required in practice because real-world facial images, e.g., the avatars in animations and games, are often stylized in various ways. However, achieving generalizable face landmarking is challenging due to the diversity of facial styles and the scarcity of labeled stylized faces. In this study, we propose a simple but effective paradigm to learn a generalizable face landmarker based on labeled real human faces and unlabeled stylized faces. Our method learns the face landmarker as the key module of a conditional face warper. Given a pair of real and stylized facial images, the conditional face warper predicts a warping field from the real face to the stylized one, in which the face landmarker predicts the ending points of the warping field and provides us with high-quality pseudo landmarks for the corresponding stylized facial images. Applying an alternating optimization strategy, we learn the face landmarker to minimize $i)$ the discrepancy between the stylized faces and the warped real ones and $ii)$ the prediction errors of both real and pseudo landmarks. Experiments on various datasets show that our method outperforms existing state-of-the-art domain adaptation methods in face landmarking tasks, leading to a face landmarker with better generalizability. Code is available at https://plustwo0.github.io/project-face-landmarker}{https://plustwo0.github.io/project-face-landmarker.
Abstract:Incorporating Search and Recommendation (S&R) services within a singular application is prevalent in online platforms, leading to a new task termed open-app motivation prediction, which aims to predict whether users initiate the application with the specific intent of information searching, or to explore recommended content for entertainment. Studies have shown that predicting users' motivation to open an app can help to improve user engagement and enhance performance in various downstream tasks. However, accurately predicting open-app motivation is not trivial, as it is influenced by user-specific factors, search queries, clicked items, as well as their temporal occurrences. Furthermore, these activities occur sequentially and exhibit intricate temporal dependencies. Inspired by the success of the Neural Hawkes Process (NHP) in modeling temporal dependencies in sequences, this paper proposes a novel neural Hawkes process model to capture the temporal dependencies between historical user browsing and querying actions. The model, referred to as Neural Hawkes Process-based Open-App Motivation prediction model (NHP-OAM), employs a hierarchical transformer and a novel intensity function to encode multiple factors, and open-app motivation prediction layer to integrate time and user-specific information for predicting users' open-app motivations. To demonstrate the superiority of our NHP-OAM model and construct a benchmark for the Open-App Motivation Prediction task, we not only extend the public S&R dataset ZhihuRec but also construct a new real-world Open-App Motivation Dataset (OAMD). Experiments on these two datasets validate NHP-OAM's superiority over baseline models. Further downstream application experiments demonstrate NHP-OAM's effectiveness in predicting users' Open-App Motivation, highlighting the immense application value of NHP-OAM.
Abstract:Geometric graph is a special kind of graph with geometric features, which is vital to model many scientific problems. Unlike generic graphs, geometric graphs often exhibit physical symmetries of translations, rotations, and reflections, making them ineffectively processed by current Graph Neural Networks (GNNs). To tackle this issue, researchers proposed a variety of Geometric Graph Neural Networks equipped with invariant/equivariant properties to better characterize the geometry and topology of geometric graphs. Given the current progress in this field, it is imperative to conduct a comprehensive survey of data structures, models, and applications related to geometric GNNs. In this paper, based on the necessary but concise mathematical preliminaries, we provide a unified view of existing models from the geometric message passing perspective. Additionally, we summarize the applications as well as the related datasets to facilitate later research for methodology development and experimental evaluation. We also discuss the challenges and future potential directions of Geometric GNNs at the end of this survey.
Abstract:As one of the most popular neural network modules, Transformer plays a central role in many fundamental deep learning models, e.g., the ViT in computer vision and the BERT and GPT in natural language processing. The effectiveness of the Transformer is often attributed to its multi-head attention (MHA) mechanism. In this study, we discuss the limitations of MHA, including the high computational complexity due to its ``query-key-value'' architecture and the numerical issue caused by its softmax operation. Considering the above problems and the recent development tendency of the attention layer, we propose an effective and efficient surrogate of the Transformer, called Sliceformer. Our Sliceformer replaces the classic MHA mechanism with an extremely simple ``slicing-sorting'' operation, i.e., projecting inputs linearly to a latent space and sorting them along different feature dimensions (or equivalently, called channels). For each feature dimension, the sorting operation implicitly generates an implicit attention map with sparse, full-rank, and doubly-stochastic structures. We consider different implementations of the slicing-sorting operation and analyze their impacts on the Sliceformer. We test the Sliceformer in the Long-Range Arena benchmark, image classification, text classification, and molecular property prediction, demonstrating its advantage in computational complexity and universal effectiveness in discriminative tasks. Our Sliceformer achieves comparable or better performance with lower memory cost and faster speed than the Transformer and its variants. Moreover, the experimental results reveal that applying our Sliceformer can empirically suppress the risk of mode collapse when representing data. The code is available at \url{https://github.com/SDS-Lab/sliceformer}.