Abstract:Data-centric methods have shown great potential in understanding and predicting spatiotemporal dynamics, enabling better design and control of the object system. However, pure deep learning models often lack interpretability, fail to obey intrinsic physics, and struggle to cope with the various domains. While geometry-based methods, e.g., graph neural networks (GNNs), have been proposed to further tackle these challenges, they still need to find the implicit physical laws from large datasets and rely excessively on rich labeled data. In this paper, we herein introduce the conservation-informed GNN (CiGNN), an end-to-end explainable learning framework, to learn spatiotemporal dynamics based on limited training data. The network is designed to conform to the general conservation law via symmetry, where conservative and non-conservative information passes over a multiscale space enhanced by a latent temporal marching strategy. The efficacy of our model has been verified in various spatiotemporal systems based on synthetic and real-world datasets, showing superiority over baseline models. Results demonstrate that CiGNN exhibits remarkable accuracy and generalization ability, and is readily applicable to learning for prediction of various spatiotemporal dynamics in a spatial domain with complex geometry.
Abstract:Data-driven simulation of physical systems has recently kindled significant attention, where many neural models have been developed. In particular, mesh-based graph neural networks (GNNs) have demonstrated significant potential in predicting spatiotemporal dynamics across arbitrary geometric domains. However, the existing node-edge message passing mechanism in GNNs limits the model's representation learning ability. In this paper, we proposed a cell-embedded GNN model (aka CeGNN) to learn spatiotemporal dynamics with lifted performance. Specifically, we introduce a learnable cell attribution to the node-edge message passing process, which better captures the spatial dependency of regional features. Such a strategy essentially upgrades the local aggregation scheme from the first order (e.g., from edge to node) to a higher order (e.g., from volume to edge and then to node), which takes advantage of volumetric information in message passing. Meanwhile, a novel feature-enhanced block is designed to further improve the performance of CeGNN and relieve the over-smoothness problem, via treating the latent features as basis functions. The extensive experiments on various PDE systems and one real-world dataset demonstrate that CeGNN achieves superior performance compared with other baseline models, particularly reducing the prediction error with up to 1 orders of magnitude on several PDE systems.