Abstract:An effective paradigm of multi-modal learning (MML) is to learn unified representations among modalities. From a causal perspective, constraining the consistency between different modalities can mine causal representations that convey primary events. However, such simple consistency may face the risk of learning insufficient or unnecessary information: a necessary but insufficient cause is invariant across modalities but may not have the required accuracy; a sufficient but unnecessary cause tends to adapt well to specific modalities but may be hard to adapt to new data. To address this issue, in this paper, we aim to learn representations that are both causal sufficient and necessary, i.e., Causal Complete Cause ($C^3$), for MML. Firstly, we define the concept of $C^3$ for MML, which reflects the probability of being causal sufficiency and necessity. We also propose the identifiability and measurement of $C^3$, i.e., $C^3$ risk, to ensure calculating the learned representations' $C^3$ scores in practice. Then, we theoretically prove the effectiveness of $C^3$ risk by establishing the performance guarantee of MML with a tight generalization bound. Based on these theoretical results, we propose a plug-and-play method, namely Causal Complete Cause Regularization ($C^3$R), to learn causal complete representations by constraining the $C^3$ risk bound. Extensive experiments conducted on various benchmark datasets empirically demonstrate the effectiveness of $C^3$R.
Abstract:Medical vision-language pre-training methods mainly leverage the correspondence between paired medical images and radiological reports. Although multi-view spatial images and temporal sequences of image-report pairs are available in off-the-shelf multi-modal medical datasets, most existing methods have not thoroughly tapped into such extensive supervision signals. In this paper, we introduce the Med-ST framework for fine-grained spatial and temporal modeling to exploit information from multiple spatial views of chest radiographs and temporal historical records. For spatial modeling, Med-ST employs the Mixture of View Expert (MoVE) architecture to integrate different visual features from both frontal and lateral views. To achieve a more comprehensive alignment, Med-ST not only establishes the global alignment between whole images and texts but also introduces modality-weighted local alignment between text tokens and spatial regions of images. For temporal modeling, we propose a novel cross-modal bidirectional cycle consistency objective by forward mapping classification (FMC) and reverse mapping regression (RMR). By perceiving temporal information from simple to complex, Med-ST can learn temporal semantics. Experimental results across four distinct tasks demonstrate the effectiveness of Med-ST, especially in temporal classification tasks. Our code and model are available at https://github.com/SVT-Yang/MedST.
Abstract:Text-to-image generative models, specifically those based on diffusion models like Imagen and Stable Diffusion, have made substantial advancements. Recently, there has been a surge of interest in the delicate refinement of text prompts. Users assign weights or alter the injection time steps of certain words in the text prompts to improve the quality of generated images. However, the success of fine-control prompts depends on the accuracy of the text prompts and the careful selection of weights and time steps, which requires significant manual intervention. To address this, we introduce the \textbf{P}rompt \textbf{A}uto-\textbf{E}diting (PAE) method. Besides refining the original prompts for image generation, we further employ an online reinforcement learning strategy to explore the weights and injection time steps of each word, leading to the dynamic fine-control prompts. The reward function during training encourages the model to consider aesthetic score, semantic consistency, and user preferences. Experimental results demonstrate that our proposed method effectively improves the original prompts, generating visually more appealing images while maintaining semantic alignment. Code is available at https://github.com/Mowenyii/PAE.
Abstract:Although deep neural networks yield high classification accuracy given sufficient training data, their predictions are typically overconfident or under-confident, i.e., the prediction confidences cannot truly reflect the accuracy. Post-hoc calibration tackles this problem by calibrating the prediction confidences without re-training the classification model. However, current approaches assume congruence between test and validation data distributions, limiting their applicability to out-of-distribution scenarios. To this end, we propose a novel meta-set-based cascaded temperature regression method for post-hoc calibration. Our method tailors fine-grained scaling functions to distinct test sets by simulating various domain shifts through data augmentation on the validation set. We partition each meta-set into subgroups based on predicted category and confidence level, capturing diverse uncertainties. A regression network is then trained to derive category-specific and confidence-level-specific scaling, achieving calibration across meta-sets. Extensive experimental results on MNIST, CIFAR-10, and TinyImageNet demonstrate the effectiveness of the proposed method.
Abstract:Human motion prediction (HMP) has emerged as a popular research topic due to its diverse applications, but it remains a challenging task due to the stochastic and aperiodic nature of future poses. Traditional methods rely on hand-crafted features and machine learning techniques, which often struggle to model the complex dynamics of human motion. Recent deep learning-based methods have achieved success by learning spatio-temporal representations of motion, but these models often overlook the reliability of motion data. Additionally, the temporal and spatial dependencies of skeleton nodes are distinct. The temporal relationship captures motion information over time, while the spatial relationship describes body structure and the relationships between different nodes. In this paper, we propose a novel spatio-temporal branching network using incremental information for HMP, which decouples the learning of temporal-domain and spatial-domain features, extracts more motion information, and achieves complementary cross-domain knowledge learning through knowledge distillation. Our approach effectively reduces noise interference and provides more expressive information for characterizing motion by separately extracting temporal and spatial features. We evaluate our approach on standard HMP benchmarks and outperform state-of-the-art methods in terms of prediction accuracy.
Abstract:Video moment localization aims to retrieve the target segment of an untrimmed video according to the natural language query. Weakly supervised methods gains attention recently, as the precise temporal location of the target segment is not always available. However, one of the greatest challenges encountered by the weakly supervised method is implied in the mismatch between the video and language induced by the coarse temporal annotations. To refine the vision-language alignment, recent works contrast the cross-modality similarities driven by reconstructing masked queries between positive and negative video proposals. However, the reconstruction may be influenced by the latent spurious correlation between the unmasked and the masked parts, which distorts the restoring process and further degrades the efficacy of contrastive learning since the masked words are not completely reconstructed from the cross-modality knowledge. In this paper, we discover and mitigate this spurious correlation through a novel proposed counterfactual cross-modality reasoning method. Specifically, we first formulate query reconstruction as an aggregated causal effect of cross-modality and query knowledge. Then by introducing counterfactual cross-modality knowledge into this aggregation, the spurious impact of the unmasked part contributing to the reconstruction is explicitly modeled. Finally, by suppressing the unimodal effect of masked query, we can rectify the reconstructions of video proposals to perform reasonable contrastive learning. Extensive experimental evaluations demonstrate the effectiveness of our proposed method. The code is available at \href{https://github.com/sLdZ0306/CCR}{https://github.com/sLdZ0306/CCR}.
Abstract:Zero-shot skeleton-based action recognition aims to recognize actions of unseen categories after training on data of seen categories. The key is to build the connection between visual and semantic space from seen to unseen classes. Previous studies have primarily focused on encoding sequences into a singular feature vector, with subsequent mapping the features to an identical anchor point within the embedded space. Their performance is hindered by 1) the ignorance of the global visual/semantic distribution alignment, which results in a limitation to capture the true interdependence between the two spaces. 2) the negligence of temporal information since the frame-wise features with rich action clues are directly pooled into a single feature vector. We propose a new zero-shot skeleton-based action recognition method via mutual information (MI) estimation and maximization. Specifically, 1) we maximize the MI between visual and semantic space for distribution alignment; 2) we leverage the temporal information for estimating the MI by encouraging MI to increase as more frames are observed. Extensive experiments on three large-scale skeleton action datasets confirm the effectiveness of our method. Code: https://github.com/YujieOuO/SMIE.
Abstract:Text-to-motion generation has gained increasing attention, but most existing methods are limited to generating short-term motions that correspond to a single sentence describing a single action. However, when a text stream describes a sequence of continuous motions, the generated motions corresponding to each sentence may not be coherently linked. Existing long-term motion generation methods face two main issues. Firstly, they cannot directly generate coherent motions and require additional operations such as interpolation to process the generated actions. Secondly, they generate subsequent actions in an autoregressive manner without considering the influence of future actions on previous ones. To address these issues, we propose a novel approach that utilizes a past-conditioned diffusion model with two optional coherent sampling methods: Past Inpainting Sampling and Compositional Transition Sampling. Past Inpainting Sampling completes subsequent motions by treating previous motions as conditions, while Compositional Transition Sampling models the distribution of the transition as the composition of two adjacent motions guided by different text prompts. Our experimental results demonstrate that our proposed method is capable of generating compositional and coherent long-term 3D human motions controlled by a user-instructed long text stream. The code is available at \href{https://github.com/yangzhao1230/PCMDM}{https://github.com/yangzhao1230/PCMDM}.
Abstract:Molecular representation learning is a crucial task in predicting molecular properties. Molecules are often modeled as graphs where atoms and chemical bonds are represented as nodes and edges, respectively, and Graph Neural Networks (GNNs) have been commonly utilized to predict atom-related properties, such as reactivity and solubility. However, functional groups (subgraphs) are closely related to some chemical properties of molecules, such as efficacy, and metabolic properties, which cannot be solely determined by individual atoms. In this paper, we introduce a new model for molecular representation learning called the Atomic and Subgraph-aware Bilateral Aggregation (ASBA), which addresses the limitations of previous atom-wise and subgraph-wise models by incorporating both types of information. ASBA consists of two branches, one for atom-wise information and the other for subgraph-wise information. Considering existing atom-wise GNNs cannot properly extract invariant subgraph features, we propose a decomposition-polymerization GNN architecture for the subgraph-wise branch. Furthermore, we propose cooperative node-level and graph-level self-supervised learning strategies for ASBA to improve its generalization. Our method offers a more comprehensive way to learn representations for molecular property prediction and has broad potential in drug and material discovery applications. Extensive experiments have demonstrated the effectiveness of our method.
Abstract:Auto-evaluation aims to automatically evaluate a trained model on any test dataset without human annotations. Most existing methods utilize global statistics of features extracted by the model as the representation of a dataset. This ignores the influence of the classification head and loses category-wise confusion information of the model. However, ratios of instances assigned to different categories together with their confidence scores reflect how many instances in which categories are difficult for the model to classify, which contain significant indicators for both overall and category-wise performances. In this paper, we propose a Confidence-based Category Relation-aware Regression ($C^2R^2$) method. $C^2R^2$ divides all instances in a meta-set into different categories according to their confidence scores and extracts the global representation from them. For each category, $C^2R^2$ encodes its local confusion relations to other categories into a local representation. The overall and category-wise performances are regressed from global and local representations, respectively. Extensive experiments show the effectiveness of our method.