Abstract:Given a piece of text, a video clip, and a reference audio, the movie dubbing task aims to generate speech that aligns with the video while cloning the desired voice. The existing methods have two primary deficiencies: (1) They struggle to simultaneously hold audio-visual sync and achieve clear pronunciation; (2) They lack the capacity to express user-defined emotions. To address these problems, we propose EmoDubber, an emotion-controllable dubbing architecture that allows users to specify emotion type and emotional intensity while satisfying high-quality lip sync and pronunciation. Specifically, we first design Lip-related Prosody Aligning (LPA), which focuses on learning the inherent consistency between lip motion and prosody variation by duration level contrastive learning to incorporate reasonable alignment. Then, we design Pronunciation Enhancing (PE) strategy to fuse the video-level phoneme sequences by efficient conformer to improve speech intelligibility. Next, the speaker identity adapting module aims to decode acoustics prior and inject the speaker style embedding. After that, the proposed Flow-based User Emotion Controlling (FUEC) is used to synthesize waveform by flow matching prediction network conditioned on acoustics prior. In this process, the FUEC determines the gradient direction and guidance scale based on the user's emotion instructions by the positive and negative guidance mechanism, which focuses on amplifying the desired emotion while suppressing others. Extensive experimental results on three benchmark datasets demonstrate favorable performance compared to several state-of-the-art methods.
Abstract:Pre-trained Vision Mamba (Vim) models have demonstrated exceptional performance across various computer vision tasks in a computationally efficient manner, attributed to their unique design of selective state space models. To further extend their applicability to diverse downstream vision tasks, Vim models can be adapted using the efficient fine-tuning technique known as visual prompting. However, existing visual prompting methods are predominantly tailored for Vision Transformer (ViT)-based models that leverage global attention, neglecting the distinctive sequential token-wise compression and propagation characteristics of Vim. Specifically, existing prompt tokens prefixed to the sequence are insufficient to effectively activate the input and forget gates across the entire sequence, hindering the extraction and propagation of discriminative information. To address this limitation, we introduce a novel Selective Visual Prompting (SVP) method specifically for the efficient fine-tuning of Vim. To prevent the loss of discriminative information during state space propagation, SVP employs lightweight selective prompters for token-wise prompt generation, ensuring adaptive activation of the update and forget gates within Mamba blocks to promote discriminative information propagation. Moreover, considering that Vim propagates both shared cross-layer information and specific inner-layer information, we further refine SVP with a dual-path structure: Cross-Prompting and Inner-Prompting. Cross-Prompting utilizes shared parameters across layers, while Inner-Prompting employs distinct parameters, promoting the propagation of both shared and specific information, respectively. Extensive experimental results on various large-scale benchmarks demonstrate that our proposed SVP significantly outperforms state-of-the-art methods. Our code is available at https://github.com/zhoujiahuan1991/AAAI2025-SVP.
Abstract:Lifelong person re-identification (LReID) is an important but challenging task that suffers from catastrophic forgetting due to significant domain gaps between training steps. Existing LReID approaches typically rely on data replay and knowledge distillation to mitigate this issue. However, data replay methods compromise data privacy by storing historical exemplars, while knowledge distillation methods suffer from limited performance due to the cumulative forgetting of undistilled knowledge. To overcome these challenges, we propose a novel paradigm that models and rehearses the distribution of the old domains to enhance knowledge consolidation during the new data learning, possessing a strong anti-forgetting capacity without storing any exemplars. Specifically, we introduce an exemplar-free LReID method called Distribution Rehearsing via Adaptive Style Kernel Learning (DASK). DASK includes a Distribution Rehearser Learning mechanism that learns to transform arbitrary distribution data into the current data style at each learning step. To enhance the style transfer capacity of DRL, an Adaptive Kernel Prediction network is explored to achieve an instance-specific distribution adjustment. Additionally, we design a Distribution Rehearsing-driven LReID Training module, which rehearses old distribution based on the new data via the old AKPNet model, achieving effective new-old knowledge accumulation under a joint knowledge consolidation scheme. Experimental results show our DASK outperforms the existing methods by 3.6%-6.8% and 4.5%-6.5% on anti-forgetting and generalization capacity, respectively. Our code is available at https://github.com/zhoujiahuan1991/AAAI2025-DASK
Abstract:Plant counting is essential in every stage of agriculture, including seed breeding, germination, cultivation, fertilization, pollination yield estimation, and harvesting. Inspired by the fact that humans count objects in high-resolution images by sequential scanning, we explore the potential of handling plant counting tasks via state space models (SSMs) for generating counting results. In this paper, we propose a new counting approach named CountMamba that constructs multiple counting experts to scan from various directions simultaneously. Specifically, we design a Multi-directional State-Space Group to process the image patch sequences in multiple orders and aim to simulate different counting experts. We also design Global-Local Adaptive Fusion to adaptively aggregate global features extracted from multiple directions and local features extracted from the CNN branch in a sample-wise manner. Extensive experiments demonstrate that the proposed CountMamba performs competitively on various plant counting tasks, including maize tassels, wheat ears, and sorghum head counting.
Abstract:Recommendation models utilizing unique identities (IDs) to represent distinct users and items have dominated the recommender systems literature for over a decade. Since multi-modal content of items (e.g., texts and images) and knowledge graphs (KGs) may reflect the interaction-related users' preferences and items' characteristics, they have been utilized as useful side information to further improve the recommendation quality. However, the success of such methods often limits to either warm-start or strict cold-start item recommendation in which some items neither appear in the training data nor have any interactions in the test stage: (1) Some fail to learn the embedding of a strict cold-start item since side information is only utilized to enhance the warm-start ID representations; (2) The others deteriorate the performance of warm-start recommendation since unrelated multi-modal content or entities in KGs may blur the final representations. In this paper, we propose a unified framework incorporating multi-modal content of items and KGs to effectively solve both strict cold-start and warm-start recommendation termed Firzen, which extracts the user-item collaborative information over frozen heterogeneous graph (collaborative knowledge graph), and exploits the item-item semantic structures and user-user behavioral association over frozen homogeneous graphs (item-item relation graph and user-user co-occurrence graph). Furthermore, we build four unified strict cold-start evaluation benchmarks based on publicly available Amazon datasets and a real-world industrial dataset from Weixin Channels via rearranging the interaction data and constructing KGs. Extensive empirical results demonstrate that our model yields significant improvements for strict cold-start recommendation and outperforms or matches the state-of-the-art performance in the warm-start scenario.
Abstract:Open-vocabulary detection (OVD) aims to detect novel objects without instance-level annotations to achieve open-world object detection at a lower cost. Existing OVD methods mainly rely on the powerful open-vocabulary image-text alignment capability of Vision-Language Pretrained Models (VLM) such as CLIP. However, CLIP is trained on image-text pairs and lacks the perceptual ability for local regions within an image, resulting in the gap between image and region representations. Directly using CLIP for OVD causes inaccurate region classification. We find the image-region gap is primarily caused by the deformation of region feature maps during region of interest (RoI) extraction. To mitigate the inaccurate region classification in OVD, we propose a new Shape-Invariant Adapter named SIA-OVD to bridge the image-region gap in the OVD task. SIA-OVD learns a set of feature adapters for regions with different shapes and designs a new adapter allocation mechanism to select the optimal adapter for each region. The adapted region representations can align better with text representations learned by CLIP. Extensive experiments demonstrate that SIA-OVD effectively improves the classification accuracy for regions by addressing the gap between images and regions caused by shape deformation. SIA-OVD achieves substantial improvements over representative methods on the COCO-OVD benchmark. The code is available at https://github.com/PKU-ICST-MIPL/SIA-OVD_ACMMM2024.
Abstract:Visual grounding aims to localize the object referred to in an image based on a natural language query. Although progress has been made recently, accurately localizing target objects within multiple-instance distractions (multiple objects of the same category as the target) remains a significant challenge. Existing methods demonstrate a significant performance drop when there are multiple distractions in an image, indicating an insufficient understanding of the fine-grained semantics and spatial relationships between objects. In this paper, we propose a novel approach, the Relation and Semantic-sensitive Visual Grounding (ResVG) model, to address this issue. Firstly, we enhance the model's understanding of fine-grained semantics by injecting semantic prior information derived from text queries into the model. This is achieved by leveraging text-to-image generation models to produce images representing the semantic attributes of target objects described in queries. Secondly, we tackle the lack of training samples with multiple distractions by introducing a relation-sensitive data augmentation method. This method generates additional training data by synthesizing images containing multiple objects of the same category and pseudo queries based on their spatial relationships. The proposed ReSVG model significantly improves the model's ability to comprehend both object semantics and spatial relations, leading to enhanced performance in visual grounding tasks, particularly in scenarios with multiple-instance distractions. We conduct extensive experiments to validate the effectiveness of our methods on five datasets. Code is available at https://github.com/minghangz/ResVG.
Abstract:Video temporal grounding aims to identify video segments within untrimmed videos that are most relevant to a given natural language query. Existing video temporal localization models rely on specific datasets for training and have high data collection costs, but they exhibit poor generalization capability under the across-dataset and out-of-distribution (OOD) settings. In this paper, we propose a Training-Free Video Temporal Grounding (TFVTG) approach that leverages the ability of pre-trained large models. A naive baseline is to enumerate proposals in the video and use the pre-trained visual language models (VLMs) to select the best proposal according to the vision-language alignment. However, most existing VLMs are trained on image-text pairs or trimmed video clip-text pairs, making it struggle to (1) grasp the relationship and distinguish the temporal boundaries of multiple events within the same video; (2) comprehend and be sensitive to the dynamic transition of events (the transition from one event to another) in the video. To address these issues, we propose leveraging large language models (LLMs) to analyze multiple sub-events contained in the query text and analyze the temporal order and relationships between these events. Secondly, we split a sub-event into dynamic transition and static status parts and propose the dynamic and static scoring functions using VLMs to better evaluate the relevance between the event and the description. Finally, for each sub-event description, we use VLMs to locate the top-k proposals and leverage the order and relationships between sub-events provided by LLMs to filter and integrate these proposals. Our method achieves the best performance on zero-shot video temporal grounding on Charades-STA and ActivityNet Captions datasets without any training and demonstrates better generalization capabilities in cross-dataset and OOD settings.
Abstract:Zero-shot Human-Object Interaction (HOI) detection has emerged as a frontier topic due to its capability to detect HOIs beyond a predefined set of categories. This task entails not only identifying the interactiveness of human-object pairs and localizing them but also recognizing both seen and unseen interaction categories. In this paper, we introduce a novel framework for zero-shot HOI detection using Conditional Multi-Modal Prompts, namely CMMP. This approach enhances the generalization of large foundation models, such as CLIP, when fine-tuned for HOI detection. Unlike traditional prompt-learning methods, we propose learning decoupled vision and language prompts for interactiveness-aware visual feature extraction and generalizable interaction classification, respectively. Specifically, we integrate prior knowledge of different granularity into conditional vision prompts, including an input-conditioned instance prior and a global spatial pattern prior. The former encourages the image encoder to treat instances belonging to seen or potentially unseen HOI concepts equally while the latter provides representative plausible spatial configuration of the human and object under interaction. Besides, we employ language-aware prompt learning with a consistency constraint to preserve the knowledge of the large foundation model to enable better generalization in the text branch. Extensive experiments demonstrate the efficacy of our detector with conditional multi-modal prompts, outperforming previous state-of-the-art on unseen classes of various zero-shot settings. The code and models are available at \url{https://github.com/ltttpku/CMMP}.
Abstract:Existing action quality assessment (AQA) methods mainly learn deep representations at the video level for scoring diverse actions. Due to the lack of a fine-grained understanding of actions in videos, they harshly suffer from low credibility and interpretability, thus insufficient for stringent applications, such as Olympic diving events. We argue that a fine-grained understanding of actions requires the model to perceive and parse actions in both time and space, which is also the key to the credibility and interpretability of the AQA technique. Based on this insight, we propose a new fine-grained spatial-temporal action parser named \textbf{FineParser}. It learns human-centric foreground action representations by focusing on target action regions within each frame and exploiting their fine-grained alignments in time and space to minimize the impact of invalid backgrounds during the assessment. In addition, we construct fine-grained annotations of human-centric foreground action masks for the FineDiving dataset, called \textbf{FineDiving-HM}. With refined annotations on diverse target action procedures, FineDiving-HM can promote the development of real-world AQA systems. Through extensive experiments, we demonstrate the effectiveness of FineParser, which outperforms state-of-the-art methods while supporting more tasks of fine-grained action understanding. Data and code are available at \url{https://github.com/PKU-ICST-MIPL/FineParser_CVPR2024}.