Abstract:Non-blind rotary motion deblurring (RMD) aims to recover the latent clear image from a rotary motion blurred (RMB) image. The rotation center is a crucial input parameter in non-blind RMD methods. Existing methods directly estimate the rotation center from the RMB image. However they always suffer significant errors, and the performance of RMD is limited. For the assembled imaging systems, the position of the rotation center remains fixed. Leveraging this prior knowledge, we propose a geometric-based method for rotation center identification and analyze its error range. Furthermore, we construct a RMB imaging system. The experiment demonstrates that our method achieves less than 1-pixel error along a single axis (x-axis or y-axis). We utilize the constructed imaging system to capture real RMB images, and experimental results show that our method can help existing RMD approaches yield better RMD images.
Abstract:Variational Autoencoders (VAEs) constitute a crucial component of neural symbolic music generation, among which some works have yielded outstanding results and attracted considerable attention. Nevertheless, previous VAEs still encounter issues with overly long feature sequences and generated results lack contextual coherence, thus the challenge of modeling long multi-track symbolic music still remains unaddressed. To this end, we propose Multi-view MidiVAE, as one of the pioneers in VAE methods that effectively model and generate long multi-track symbolic music. The Multi-view MidiVAE utilizes the two-dimensional (2-D) representation, OctupleMIDI, to capture relationships among notes while reducing the feature sequences length. Moreover, we focus on instrumental characteristics and harmony as well as global and local information about the musical composition by employing a hybrid variational encoding-decoding strategy to integrate both Track- and Bar-view MidiVAE features. Objective and subjective experimental results on the CocoChorales dataset demonstrate that, compared to the baseline, Multi-view MidiVAE exhibits significant improvements in terms of modeling long multi-track symbolic music.
Abstract:Batch effects (BEs) refer to systematic technical differences in data collection unrelated to biological variations whose noise is shown to negatively impact machine learning (ML) model generalizability. Here we release CohortFinder, an open-source tool aimed at mitigating BEs via data-driven cohort partitioning. We demonstrate CohortFinder improves ML model performance in downstream medical image processing tasks. CohortFinder is freely available for download at cohortfinder.com.
Abstract:The discovery of patterns associated with diagnosis, prognosis, and therapy response in digital pathology images often requires intractable labeling of large quantities of histological objects. Here we release an open-source labeling tool, PatchSorter, which integrates deep learning with an intuitive web interface. Using >100,000 objects, we demonstrate a >7x improvement in labels per second over unaided labeling, with minimal impact on labeling accuracy, thus enabling high-throughput labeling of large datasets.
Abstract:We present Wasserstein introspective neural networks (WINN) that are both a generator and a discriminator within a single model. WINN provides a significant improvement over the recent introspective neural networks (INN) method by enhancing INN's generative modeling capability. WINN has three interesting properties: (1) A mathematical connection between the formulation of the INN algorithm and that of Wasserstein generative adversarial networks (WGAN) is made. (2) The explicit adoption of the Wasserstein distance into INN results in a large enhancement to INN, achieving compelling results even with a single classifier --- e.g., providing nearly a 20 times reduction in model size over INN for unsupervised generative modeling. (3) When applied to supervised classification, WINN also gives rise to improved robustness against adversarial examples in terms of the error reduction. In the experiments, we report encouraging results on unsupervised learning problems including texture, face, and object modeling, as well as a supervised classification task against adversarial attacks.