Abstract:Effective visual brain-machine interfaces (BMI) is based on reliable and stable EEG biomarkers. However, traditional adaptive filter-based approaches may suffer from individual variations in EEG signals, while deep neural network-based approaches may be hindered by the non-stationarity of EEG signals caused by biomarker attenuation and background oscillations. To address these challenges, we propose the Visual Evoked Potential Booster (VEP Booster), a novel closed-loop AI framework that generates reliable and stable EEG biomarkers under visual stimulation protocols. Our system leverages an image generator to refine stimulus images based on real-time feedback from human EEG signals, generating visual stimuli tailored to the preferences of primary visual cortex (V1) neurons and enabling effective targeting of neurons most responsive to stimuli. We validated our approach by implementing a system and employing steady-state visual evoked potential (SSVEP) visual protocols in five human subjects. Our results show significant enhancements in the reliability and utility of EEG biomarkers for all individuals, with the largest improvement in SSVEP response being 105%, the smallest being 28%, and the average increase being 76.5%. These promising results have implications for both clinical and technological applications
Abstract:Spiking neural networks (SNNs) represent a promising approach to developing artificial neural networks that are both energy-efficient and biologically plausible. However, applying SNNs to sequential tasks, such as text classification and time-series forecasting, has been hindered by the challenge of creating an effective and hardware-friendly spike-form positional encoding (PE) strategy. Drawing inspiration from the central pattern generators (CPGs) in the human brain, which produce rhythmic patterned outputs without requiring rhythmic inputs, we propose a novel PE technique for SNNs, termed CPG-PE. We demonstrate that the commonly used sinusoidal PE is mathematically a specific solution to the membrane potential dynamics of a particular CPG. Moreover, extensive experiments across various domains, including time-series forecasting, natural language processing, and image classification, show that SNNs with CPG-PE outperform their conventional counterparts. Additionally, we perform analysis experiments to elucidate the mechanism through which SNNs encode positional information and to explore the function of CPGs in the human brain. This investigation may offer valuable insights into the fundamental principles of neural computation.
Abstract:Adding additional control to pretrained diffusion models has become an increasingly popular research area, with extensive applications in computer vision, reinforcement learning, and AI for science. Recently, several studies have proposed training-free diffusion guidance by using off-the-shelf networks pretrained on clean images. This approach enables zero-shot conditional generation for universal control formats, which appears to offer a free lunch in diffusion guidance. In this paper, we aim to develop a deeper understanding of the operational mechanisms and fundamental limitations of training-free guidance. We offer a theoretical analysis that supports training-free guidance from the perspective of optimization, distinguishing it from classifier-based (or classifier-free) guidance. To elucidate their drawbacks, we theoretically demonstrate that training-free methods are more susceptible to adversarial gradients and exhibit slower convergence rates compared to classifier guidance. We then introduce a collection of techniques designed to overcome the limitations, accompanied by theoretical rationale and empirical evidence. Our experiments in image and motion generation confirm the efficacy of these techniques.
Abstract:Spiking neural networks (SNNs), inspired by the spiking behavior of biological neurons, provide a unique pathway for capturing the intricacies of temporal data. However, applying SNNs to time-series forecasting is challenging due to difficulties in effective temporal alignment, complexities in encoding processes, and the absence of standardized guidelines for model selection. In this paper, we propose a framework for SNNs in time-series forecasting tasks, leveraging the efficiency of spiking neurons in processing temporal information. Through a series of experiments, we demonstrate that our proposed SNN-based approaches achieve comparable or superior results to traditional time-series forecasting methods on diverse benchmarks with much less energy consumption. Furthermore, we conduct detailed analysis experiments to assess the SNN's capacity to capture temporal dependencies within time-series data, offering valuable insights into its nuanced strengths and effectiveness in modeling the intricate dynamics of temporal data. Our study contributes to the expanding field of SNNs and offers a promising alternative for time-series forecasting tasks, presenting a pathway for the development of more biologically inspired and temporally aware forecasting models.
Abstract:Empowering embodied agents, such as robots, with Artificial Intelligence (AI) has become increasingly important in recent years. A major challenge is task open-endedness. In practice, robots often need to perform tasks with novel goals that are multifaceted, dynamic, lack a definitive "end-state", and were not encountered during training. To tackle this problem, this paper introduces \textit{Diffusion for Open-ended Goals} (DOG), a novel framework designed to enable embodied AI to plan and act flexibly and dynamically for open-ended task goals. DOG synergizes the generative prowess of diffusion models with state-of-the-art, training-free guidance techniques to adaptively perform online planning and control. Our evaluations demonstrate that DOG can handle various kinds of novel task goals not seen during training, in both maze navigation and robot control problems. Our work sheds light on enhancing embodied AI's adaptability and competency in tackling open-ended goals.
Abstract:Precision medicine tailored to individual patients has gained significant attention in recent times. Machine learning techniques are now employed to process personalized data from various sources, including images, genetics, and assessments. These techniques have demonstrated good outcomes in many clinical prediction tasks. Notably, the approach of constructing graphs by linking similar patients and then applying graph neural networks (GNNs) stands out, because related information from analogous patients are aggregated and considered for prediction. However, selecting the appropriate edge feature to define patient similarity and construct the graph is challenging, given that each patient is depicted by high-dimensional features from diverse sources. Previous studies rely on human expertise to select the edge feature, which is neither scalable nor efficient in pinpointing crucial edge features for complex diseases. In this paper, we propose a novel algorithm named \ours, which can automatically select important features to construct multiple patient similarity graphs, and train GNNs based on these graphs as weak learners in adaptive boosting. \ours{} is evaluated on two real-world medical scenarios and shows superiors performance.
Abstract:Human vision incorporates non-uniform resolution retina, efficient eye movement strategy, and spiking neural network (SNN) to balance the requirements in visual field size, visual resolution, energy cost, and inference latency. These properties have inspired interest in developing human-like computer vision. However, existing models haven't fully incorporated the three features of human vision, and their learned eye movement strategies haven't been compared with human's strategy, making the models' behavior difficult to interpret. Here, we carry out experiments to examine human visual search behaviors and establish the first SNN-based visual search model. The model combines an artificial retina with spiking feature extraction, memory, and saccade decision modules, and it employs population coding for fast and efficient saccade decisions. The model can learn either a human-like or a near-optimal fixation strategy, outperform humans in search speed and accuracy, and achieve high energy efficiency through short saccade decision latency and sparse activation. It also suggests that the human search strategy is suboptimal in terms of search speed. Our work connects modeling of vision in neuroscience and machine learning and sheds light on developing more energy-efficient computer vision algorithms.
Abstract:How to behave efficiently and flexibly is a central problem for understanding biological agents and creating intelligent embodied AI. It has been well known that behavior can be classified as two types: reward-maximizing habitual behavior, which is fast while inflexible; and goal-directed behavior, which is flexible while slow. Conventionally, habitual and goal-directed behaviors are considered handled by two distinct systems in the brain. Here, we propose to bridge the gap between the two behaviors, drawing on the principles of variational Bayesian theory. We incorporate both behaviors in one framework by introducing a Bayesian latent variable called "intention". The habitual behavior is generated by using prior distribution of intention, which is goal-less; and the goal-directed behavior is generated by the posterior distribution of intention, which is conditioned on the goal. Building on this idea, we present a novel Bayesian framework for modeling behaviors. Our proposed framework enables skill sharing between the two kinds of behaviors, and by leveraging the idea of predictive coding, it enables an agent to seamlessly generalize from habitual to goal-directed behavior without requiring additional training. The proposed framework suggests a fresh perspective for cognitive science and embodied AI, highlighting the potential for greater integration between habitual and goal-directed behaviors.
Abstract:Host-based threats such as Program Attack, Malware Implantation, and Advanced Persistent Threats (APT), are commonly adopted by modern attackers. Recent studies propose leveraging the rich contextual information in data provenance to detect threats in a host. Data provenance is a directed acyclic graph constructed from system audit data. Nodes in a provenance graph represent system entities (e.g., $processes$ and $files$) and edges represent system calls in the direction of information flow. However, previous studies, which extract features of the whole provenance graph, are not sensitive to the small number of threat-related entities and thus result in low performance when hunting stealthy threats. We present threaTrace, an anomaly-based detector that detects host-based threats at system entity level without prior knowledge of attack patterns. We tailor GraphSAGE, an inductive graph neural network, to learn every benign entity's role in a provenance graph. threaTrace is a real-time system, which is scalable of monitoring a long-term running host and capable of detecting host-based intrusion in their early phase. We evaluate threaTrace on three public datasets. The results show that threaTrace outperforms three state-of-the-art host intrusion detection systems.
Abstract:Unsupervised Deep Learning (DL) techniques have been widely used in various security-related anomaly detection applications, owing to the great promise of being able to detect unforeseen threats and superior performance provided by Deep Neural Networks (DNN). However, the lack of interpretability creates key barriers to the adoption of DL models in practice. Unfortunately, existing interpretation approaches are proposed for supervised learning models and/or non-security domains, which are unadaptable for unsupervised DL models and fail to satisfy special requirements in security domains. In this paper, we propose DeepAID, a general framework aiming to (1) interpret DL-based anomaly detection systems in security domains, and (2) improve the practicality of these systems based on the interpretations. We first propose a novel interpretation method for unsupervised DNNs by formulating and solving well-designed optimization problems with special constraints for security domains. Then, we provide several applications based on our Interpreter as well as a model-based extension Distiller to improve security systems by solving domain-specific problems. We apply DeepAID over three types of security-related anomaly detection systems and extensively evaluate our Interpreter with representative prior works. Experimental results show that DeepAID can provide high-quality interpretations for unsupervised DL models while meeting the special requirements of security domains. We also provide several use cases to show that DeepAID can help security operators to understand model decisions, diagnose system mistakes, give feedback to models, and reduce false positives.