Abstract:Artificial intelligence (AI) is pivotal in advancing fifth-generation (5G)-Advanced and sixth-generation systems, capturing substantial research interest. Both the 3rd Generation Partnership Project (3GPP) and leading corporations champion AI's standardization in wireless communication. This piece delves into AI's role in channel state information (CSI) prediction, a sub-use case acknowledged in 5G-Advanced by the 3GPP. We offer an exhaustive survey of AI-driven CSI prediction, highlighting crucial elements like accuracy, generalization, and complexity. Further, we touch on the practical side of model management, encompassing training, monitoring, and data gathering. Moreover, we explore prospects for CSI prediction in future wireless communication systems, entailing integrated design with feedback, multitasking synergy, and predictions in rapid scenarios. This article seeks to be a touchstone for subsequent research in this burgeoning domain.
Abstract:Effective visual brain-machine interfaces (BMI) is based on reliable and stable EEG biomarkers. However, traditional adaptive filter-based approaches may suffer from individual variations in EEG signals, while deep neural network-based approaches may be hindered by the non-stationarity of EEG signals caused by biomarker attenuation and background oscillations. To address these challenges, we propose the Visual Evoked Potential Booster (VEP Booster), a novel closed-loop AI framework that generates reliable and stable EEG biomarkers under visual stimulation protocols. Our system leverages an image generator to refine stimulus images based on real-time feedback from human EEG signals, generating visual stimuli tailored to the preferences of primary visual cortex (V1) neurons and enabling effective targeting of neurons most responsive to stimuli. We validated our approach by implementing a system and employing steady-state visual evoked potential (SSVEP) visual protocols in five human subjects. Our results show significant enhancements in the reliability and utility of EEG biomarkers for all individuals, with the largest improvement in SSVEP response being 105%, the smallest being 28%, and the average increase being 76.5%. These promising results have implications for both clinical and technological applications