Abstract:In the realm of reconfigurable intelligent surface (RIS)-assisted communication systems, the connection between a base station (BS) and user equipment (UE) is formed by a cascaded channel, merging the BS-RIS and RIS-UE channels. Due to the fixed positioning of the BS and RIS and the mobility of UE, these two channels generally exhibit different time-varying characteristics, which are challenging to identify and exploit for feedback overhead reduction, given the separate channel estimation difficulty. To address this challenge, this letter introduces an innovative deep learning-based framework tailored for cascaded channel feedback, ingeniously capturing the intrinsic time variation in the cascaded channel. When an entire cascaded channel has been sent to the BS, this framework advocates the feedback of an efficient representation of this variation within a subsequent period through an extraction-compression scheme. This scheme involves RIS unit-grained channel variation extraction, followed by autoencoder-based deep compression to enhance compactness. Numerical simulations confirm that this feedback framework significantly reduces both the feedback and computational burdens.
Abstract:In Wi-Fi systems, channel state information (CSI) plays a crucial role in enabling access points to execute beamforming operations. However, the feedback overhead associated with CSI significantly hampers the throughput improvements. Recent advancements in deep learning (DL) have transformed the approach to CSI feedback in cellular systems. Drawing inspiration from the successes witnessed in the realm of mobile communications, this paper introduces a DL-based CSI feedback framework, named EFNet, tailored for Wi-Fi systems. The proposed framework leverages an autoencoder to achieve precise feedback with minimal overhead. The process involves the station utilizing the encoder to compress and quantize a series of matrices into codeword bit streams, which are then fed back to the access point. Subsequently, the decoder installed at the AP reconstructs beamforming matrices from these bit streams. We implement the EFNet system using standard Wi-Fi equipment operating in the 2.4 GHz band. Experimental findings in an office environment reveal a remarkable 80.77% reduction in feedback overhead compared to the 802.11ac standard, alongside a significant boost in net throughput of up to 30.72%.
Abstract:In the evolving environment of mobile edge computing (MEC), optimizing system performance to meet the growing demand for low-latency computing services is a top priority. Integrating fluidic antenna (FA) technology into MEC networks provides a new approach to address this challenge. This letter proposes an FA-enabled MEC scheme that aims to minimize the total system delay by leveraging the mobility of FA to enhance channel conditions and improve computational offloading efficiency. By establishing an optimization problem focusing on the joint optimization of computation offloading and antenna positioning, we introduce an alternating iterative algorithm based on the interior point method and particle swarm optimization (IPPSO). Numerical results demonstrate the advantages of our proposed scheme compared to traditional fixed antenna positions, showing significant improvements in transmission rates and reductions in delays. The proposed IPPSO algorithm exhibits robust convergence properties, further validating the effectiveness of our method.
Abstract:Reconfigurable intelligent surface (RIS) is a novel meta-material which can form a smart radio environment by dynamically altering reflection directions of the impinging electromagnetic waves. In the prior literature, the inter-RIS links which also contribute to the performance of the whole system are usually neglected when multiple RISs are deployed. In this paper we investigate a general double-RIS assisted multiple-input multiple-output (MIMO) wireless communication system under spatially correlated non line-of-sight propagation channels, where the cooperation of the double RISs is also considered. The design objective is to maximize the achievable ergodic rate based on full statistical channel state information (CSI). Specifically, we firstly present a closed-form asymptotic expression for the achievable ergodic rate by utilizing replica method from statistical physics. Then a full statistical CSI-enabled optimal design is proposed which avoids high pilot training overhead compared to instantaneous CSI-enabled design. To further reduce the signal processing overhead and lower the complexity for practical realization, a common-phase scheme is proposed to design the double RISs. Simulation results show that the derived asymptotic ergodic rate is quite accurate even for small-sized antenna arrays. And the proposed optimization algorithm can achieve substantial gain at the expense of a low overhead and complexity. Furthermore, the cooperative double-RIS assisted MIMO framework is proven to achieve superior ergodic rate performance and high communication reliability under harsh propagation environment.
Abstract:Deep learning has revolutionized the design of the channel state information (CSI) feedback module in wireless communications. However, designing the optimal neural network (NN) architecture for CSI feedback can be a laborious and time-consuming process. Manual design can be prohibitively expensive for customizing NNs to different scenarios. This paper proposes using neural architecture search (NAS) to automate the generation of scenario-customized CSI feedback NN architectures, thereby maximizing the potential of deep learning in exclusive environments. By employing automated machine learning and gradient-descent-based NAS, an efficient and cost-effective architecture design process is achieved. The proposed approach leverages implicit scene knowledge, integrating it into the scenario customization process in a data-driven manner, and fully exploits the potential of deep learning for each specific scenario. To address the issue of excessive search, early stopping and elastic selection mechanisms are employed, enhancing the efficiency of the proposed scheme. The experimental results demonstrate that the automatically generated architecture, known as Auto-CsiNet, outperforms manually-designed models in both reconstruction performance (achieving approximately a 14% improvement) and complexity (reducing it by approximately 50%). Furthermore, the paper analyzes the impact of the scenario on the NN architecture and its capacity.
Abstract:Accurate and effective channel state information (CSI) feedback is a key technology for massive multiple-input and multiple-output systems. Recently, deep learning (DL) has been introduced for CSI feedback enhancement through massive collected training data and lengthy training time, which is quite costly and impractical for realistic deployment. In this article, a knowledge-driven meta-learning approach is proposed, where the DL model initialized by the meta model obtained from meta training phase is able to achieve rapid convergence when facing a new scenario during target retraining phase. Specifically, instead of training with massive data collected from various scenarios, the meta task environment is constructed based on the intrinsic knowledge of spatial-frequency characteristics of CSI for meta training. Moreover, the target task dataset is also augmented by exploiting the knowledge of statistical characteristics of wireless channel, so that the DL model can achieve higher performance with small actually collected dataset and short training time. In addition, we provide analyses of rationale for the improvement yielded by the knowledge in both phases. Simulation results demonstrate the superiority of the proposed approach from the perspective of feedback performance and convergence speed.
Abstract:Integrated sensing and communication (ISAC) system has been envisioned as a promising technology to be applied in future applications requiring both communication and high-accuracy sensing. Different from most research focusing on theoretical analysis and optimization in the area of ISAC, we implement a reconfigurable distributed antennas and reflecting surfaces (RDARS)-aided ISAC system prototype to achieve the dual-functionalities with the communication signal. A RDARS, composed of programmable elements capable of switching between reflection mode and connected mode, is introduced to assist in uplink signal transmission and sensing. The developed RDARS-aided ISAC prototype achieves reliable user localization without compromising the communication rate, showcasing its potential for future 6G systems.
Abstract:The research on the sixth-generation (6G) wireless communications for the development of future mobile communication networks has been officially launched around the world. 6G networks face multifarious challenges, such as resource-constrained mobile devices, difficult wireless resource management, high complexity of heterogeneous network architectures, explosive computing and storage requirements, privacy and security threats. To address these challenges, deploying blockchain and artificial intelligence (AI) in 6G networks may realize new breakthroughs in advancing network performances in terms of security, privacy, efficiency, cost, and more. In this paper, we provide a detailed survey of existing works on the application of blockchain and AI to 6G wireless communications. More specifically, we start with a brief overview of blockchain and AI. Then, we mainly review the recent advances in the fusion of blockchain and AI, and highlight the inevitable trend of deploying both blockchain and AI in wireless communications. Furthermore, we extensively explore integrating blockchain and AI for wireless communication systems, involving secure services and Internet of Things (IoT) smart applications. Particularly, some of the most talked-about key services based on blockchain and AI are introduced, such as spectrum management, computation allocation, content caching, and security and privacy. Moreover, we also focus on some important IoT smart applications supported by blockchain and AI, covering smart healthcare, smart transportation, smart grid, and unmanned aerial vehicles (UAVs). We also analyze the open issues and research challenges for the joint deployment of blockchain and AI in 6G wireless communications. Lastly, based on lots of existing meaningful works, this paper aims to provide a comprehensive survey of blockchain and AI in 6G networks.
Abstract:Deep learning (DL)-based channel state information (CSI) feedback has received significant research attention in recent years. However, previous research has overlooked the potential privacy disclosure problem caused by the transmission of CSI datasets during the training process. In this work, we introduce a federated edge learning (FEEL)-based training framework for DL-based CSI feedback. This approach differs from the conventional centralized learning (CL)-based framework in which the CSI datasets are collected at the base station (BS) before training. Instead, each user equipment (UE) trains a local autoencoder network and exchanges model parameters with the BS. This approach provides better protection for data privacy compared to CL. To further reduce communication overhead in FEEL, we quantize uplink and downlink model transmission into different bits based on their influence on feedback performance. Additionally, since the heterogeneity of CSI datasets in different UEs can degrade the performance of the FEEL-based framework, we introduce a personalization strategy to improve feedback performance. This strategy allows for local fine-tuning to adapt the global model to the channel characteristics of each UE. Simulation results indicate that the proposed personalized FEEL-based training framework can significantly improve the performance of DL-based CSI feedback while reducing communication overhead.
Abstract:Deep learning-based autoencoder has shown considerable potential in channel state information (CSI) feedback. However, the excellent feedback performance achieved by autoencoder is at the expense of a high computational complexity. In this paper, a knowledge distillation-based neural network lightweight strategy is introduced to deep learning-based CSI feedback to reduce the computational requirement. The key idea is to transfer the dark knowledge learned by a complicated teacher network to a lightweight student network, thereby improving the performance of the student network. First, an autoencoder distillation method is proposed by forcing the student autoencoder to mimic the output of the teacher autoencoder. Then, given the more limited computational power at the user equipment, an encoder distillation method is proposed where distillation is only performed to student encoder at the user equipment and the teacher decoder is directly used at the base stataion. The numerical simulation results show that the performance of student autoencoder can be considerably improved after knowledge distillation and encoder distillation can further improve the feedback performance and reduce the complexity.