Artificial intelligence (AI) has emerged as a promising tool for channel state information (CSI) feedback. While recent research primarily focuses on improving feedback accuracy through novel architectures, the underlying mechanisms of AI-based CSI feedback remain unclear. This study investigates these mechanisms by analyzing performance across diverse datasets and reveals that superior feedback performance stems from the strong fitting capabilities of AI models and their ability to leverage environmental knowledge. Building on these findings, we propose a prompt-enabled large AI model (LAM) for CSI feedback. The LAM employs powerful transformer blocks and is trained on extensive datasets from various scenarios. To further enhance reconstruction quality, the channel distribution -- represented as the mean of channel magnitude in the angular domain -- is incorporated as a prompt within the decoder. Simulation results confirm that the proposed prompt-enabled LAM significantly improves feedback accuracy and generalization performance while reducing data collection requirements in new scenarios.