Abstract:Business intelligence (BI) transforms large volumes of data within modern organizations into actionable insights for informed decision-making. Recently, large language model (LLM)-based agents have streamlined the BI workflow by automatically performing task planning, reasoning, and actions in executable environments based on natural language (NL) queries. However, existing approaches primarily focus on individual BI tasks such as NL2SQL and NL2VIS. The fragmentation of tasks across different data roles and tools lead to inefficiencies and potential errors due to the iterative and collaborative nature of BI. In this paper, we introduce DataLab, a unified BI platform that integrates a one-stop LLM-based agent framework with an augmented computational notebook interface. DataLab supports a wide range of BI tasks for different data roles by seamlessly combining LLM assistance with user customization within a single environment. To achieve this unification, we design a domain knowledge incorporation module tailored for enterprise-specific BI tasks, an inter-agent communication mechanism to facilitate information sharing across the BI workflow, and a cell-based context management strategy to enhance context utilization efficiency in BI notebooks. Extensive experiments demonstrate that DataLab achieves state-of-the-art performance on various BI tasks across popular research benchmarks. Moreover, DataLab maintains high effectiveness and efficiency on real-world datasets from Tencent, achieving up to a 58.58% increase in accuracy and a 61.65% reduction in token cost on enterprise-specific BI tasks.
Abstract:Business intelligence (BI) transforms large volumes of data within modern organizations into actionable insights for informed decision-making. Recently, large language model (LLM)-based agents have streamlined the BI workflow by automatically performing task planning, reasoning, and actions in executable environments based on natural language (NL) queries. However, existing approaches primarily focus on individual BI tasks such as NL2SQL and NL2VIS. The fragmentation of tasks across different data roles and tools lead to inefficiencies and potential errors due to the iterative and collaborative nature of BI. In this paper, we introduce DataLab, a unified BI platform that integrates a one-stop LLM-based agent framework with an augmented computational notebook interface. DataLab supports a wide range of BI tasks for different data roles by seamlessly combining LLM assistance with user customization within a single environment. To achieve this unification, we design a domain knowledge incorporation module tailored for enterprise-specific BI tasks, an inter-agent communication mechanism to facilitate information sharing across the BI workflow, and a cell-based context management strategy to enhance context utilization efficiency in BI notebooks. Extensive experiments demonstrate that DataLab achieves state-of-the-art performance on various BI tasks across popular research benchmarks. Moreover, DataLab maintains high effectiveness and efficiency on real-world datasets from Tencent, achieving up to a 58.58% increase in accuracy and a 61.65% reduction in token cost on enterprise-specific BI tasks.
Abstract:A well-executed graphic design typically achieves harmony in two levels, from the fine-grained design elements (color, font and layout) to the overall design. This complexity makes the comprehension of graphic design challenging, for it needs the capability to both recognize the design elements and understand the design. With the rapid development of Multimodal Large Language Models (MLLMs), we establish the DesignProbe, a benchmark to investigate the capability of MLLMs in design. Our benchmark includes eight tasks in total, across both the fine-grained element level and the overall design level. At design element level, we consider both the attribute recognition and semantic understanding tasks. At overall design level, we include style and metaphor. 9 MLLMs are tested and we apply GPT-4 as evaluator. Besides, further experiments indicates that refining prompts can enhance the performance of MLLMs. We first rewrite the prompts by different LLMs and found increased performances appear in those who self-refined by their own LLMs. We then add extra task knowledge in two different ways (text descriptions and image examples), finding that adding images boost much more performance over texts.
Abstract:Templates serve as a good starting point to implement a design (e.g., banner, slide) but it takes great effort from designers to manually create. In this paper, we present Desigen, an automatic template creation pipeline which generates background images as well as harmonious layout elements over the background. Different from natural images, a background image should preserve enough non-salient space for the overlaying layout elements. To equip existing advanced diffusion-based models with stronger spatial control, we propose two simple but effective techniques to constrain the saliency distribution and reduce the attention weight in desired regions during the background generation process. Then conditioned on the background, we synthesize the layout with a Transformer-based autoregressive generator. To achieve a more harmonious composition, we propose an iterative inference strategy to adjust the synthesized background and layout in multiple rounds. We constructed a design dataset with more than 40k advertisement banners to verify our approach. Extensive experiments demonstrate that the proposed pipeline generates high-quality templates comparable to human designers. More than a single-page design, we further show an application of presentation generation that outputs a set of theme-consistent slides. The data and code are available at https://whaohan.github.io/desigen.
Abstract:Layout generation is a critical step in graphic design to achieve meaningful compositions of elements. Most previous works view it as a sequence generation problem by concatenating element attribute tokens (i.e., category, size, position). So far the autoregressive approach (AR) has achieved promising results, but is still limited in global context modeling and suffers from error propagation since it can only attend to the previously generated tokens. Recent non-autoregressive attempts (NAR) have shown competitive results, which provides a wider context range and the flexibility to refine with iterative decoding. However, current works only use simple heuristics to recognize erroneous tokens for refinement which is inaccurate. This paper first conducts an in-depth analysis to better understand the difference between the AR and NAR framework. Furthermore, based on our observation that pixel space is more sensitive in capturing spatial patterns of graphic layouts (e.g., overlap, alignment), we propose a learning-based locator to detect erroneous tokens which takes the wireframe image rendered from the generated layout sequence as input. We show that it serves as a complementary modality to the element sequence in object space and contributes greatly to the overall performance. Experiments on two public datasets show that our approach outperforms both AR and NAR baselines. Extensive studies further prove the effectiveness of different modules with interesting findings. Our code will be available at https://github.com/ffffatgoose/SpotError.
Abstract:The distributed data analytic system -- Spark is a common choice for processing massive volumes of heterogeneous data, while it is challenging to tune its parameters to achieve high performance. Recent studies try to employ auto-tuning techniques to solve this problem but suffer from three issues: limited functionality, high overhead, and inefficient search. In this paper, we present a general and efficient Spark tuning framework that can deal with the three issues simultaneously. First, we introduce a generalized tuning formulation, which can support multiple tuning goals and constraints conveniently, and a Bayesian optimization (BO) based solution to solve this generalized optimization problem. Second, to avoid high overhead from additional offline evaluations in existing methods, we propose to tune parameters along with the actual periodic executions of each job (i.e., online evaluations). To ensure safety during online job executions, we design a safe configuration acquisition method that models the safe region. Finally, three innovative techniques are leveraged to further accelerate the search process: adaptive sub-space generation, approximate gradient descent, and meta-learning method. We have implemented this framework as an independent cloud service, and applied it to the data platform in Tencent. The empirical results on both public benchmarks and large-scale production tasks demonstrate its superiority in terms of practicality, generality, and efficiency. Notably, this service saves an average of 57.00% memory cost and 34.93% CPU cost on 25K in-production tasks within 20 iterations, respectively.