Abstract:In this paper, we introduce CalliffusionV2, a novel system designed to produce natural Chinese calligraphy with flexible multi-modal control. Unlike previous approaches that rely solely on image or text inputs and lack fine-grained control, our system leverages both images to guide generations at fine-grained levels and natural language texts to describe the features of generations. CalliffusionV2 excels at creating a broad range of characters and can quickly learn new styles through a few-shot learning approach. It is also capable of generating non-Chinese characters without prior training. Comprehensive tests confirm that our system produces calligraphy that is both stylistically accurate and recognizable by neural network classifiers and human evaluators.
Abstract:Chinese calligraphy can be viewed as a unique form of visual art. Recent advancements in computer vision hold significant potential for the future development of generative models in the realm of Chinese calligraphy. Nevertheless, methods of Chinese calligraphy inpainting, which can be effectively used in the art and education fields, remain relatively unexplored. In this paper, we introduce a new model that harnesses recent advancements in both Chinese calligraphy generation and image inpainting. We demonstrate that our proposed model CalliPaint can produce convincing Chinese calligraphy.
Abstract:Recently, ChatGPT has emerged as a powerful NLP tool that can carry out several tasks. However, the range of languages ChatGPT can handle remains largely a mystery. In this work, we investigate ChatGPT's language identification abilities. For this purpose, we compile Babel-670, a benchmark comprising $670$ languages representing $23$ language families. Languages in Babel-670 run the gamut between the very high-resource to the very low-resource and are spoken in five continents. We then study ChatGPT's (both GPT-3.5 and GPT-4) ability to (i) identify both language names and language codes (ii) under both zero- and few-shot conditions (iii) with and without provision of label set. When compared to smaller finetuned language identification tools, we find that ChatGPT lags behind. Our empirical analysis shows the reality that ChatGPT still resides in a state of potential enhancement before it can sufficiently serve diverse communities.
Abstract:Instruction tuned large language models (LLMs), such as ChatGPT, demonstrate remarkable performance in a wide range of tasks. Despite numerous recent studies that examine the performance of instruction-tuned LLMs on various NLP benchmarks, there remains a lack of comprehensive investigation into their ability to understand cross-lingual sociopragmatic meaning (SM), i.e., meaning embedded within social and interactive contexts. This deficiency arises partly from SM not being adequately represented in any of the existing benchmarks. To address this gap, we present SPARROW, an extensive multilingual benchmark specifically designed for SM understanding. SPARROW comprises 169 datasets covering 13 task types across six primary categories (e.g., anti-social language detection, emotion recognition). SPARROW datasets encompass 64 different languages originating from 12 language families representing 16 writing scripts. We evaluate the performance of various multilingual pretrained language models (e.g., mT5) and instruction-tuned LLMs (e.g., BLOOMZ, ChatGPT) on SPARROW through fine-tuning, zero-shot, and/or few-shot learning. Our comprehensive analysis reveals that existing open-source instruction tuned LLMs still struggle to understand SM across various languages, performing close to a random baseline in some cases. We also find that although ChatGPT outperforms many LLMs, it still falls behind task-specific finetuned models with a gap of 12.19 SPARROW score. Our benchmark is available at: https://github.com/UBC-NLP/SPARROW
Abstract:In this paper, we propose Calliffusion, a system for generating high-quality Chinese calligraphy using diffusion models. Our model architecture is based on DDPM (Denoising Diffusion Probabilistic Models), and it is capable of generating common characters in five different scripts and mimicking the styles of famous calligraphers. Experiments demonstrate that our model can generate calligraphy that is difficult to distinguish from real artworks and that our controls for characters, scripts, and styles are effective. Moreover, we demonstrate one-shot transfer learning, using LoRA (Low-Rank Adaptation) to transfer Chinese calligraphy art styles to unseen characters and even out-of-domain symbols such as English letters and digits.
Abstract:This paper describes our system for SemEval-2023 Task 3 Subtask 2 on Framing Detection. We used a multi-label contrastive loss for fine-tuning large pre-trained language models in a multi-lingual setting, achieving very competitive results: our system was ranked first on the official test set and on the official shared task leaderboard for five of the six languages for which we had training data and for which we could perform fine-tuning. Here, we describe our experimental setup, as well as various ablation studies. The code of our system is available at https://github.com/QishengL/SemEval2023