Abstract:Chinese calligraphy can be viewed as a unique form of visual art. Recent advancements in computer vision hold significant potential for the future development of generative models in the realm of Chinese calligraphy. Nevertheless, methods of Chinese calligraphy inpainting, which can be effectively used in the art and education fields, remain relatively unexplored. In this paper, we introduce a new model that harnesses recent advancements in both Chinese calligraphy generation and image inpainting. We demonstrate that our proposed model CalliPaint can produce convincing Chinese calligraphy.
Abstract:In this paper, we propose Calliffusion, a system for generating high-quality Chinese calligraphy using diffusion models. Our model architecture is based on DDPM (Denoising Diffusion Probabilistic Models), and it is capable of generating common characters in five different scripts and mimicking the styles of famous calligraphers. Experiments demonstrate that our model can generate calligraphy that is difficult to distinguish from real artworks and that our controls for characters, scripts, and styles are effective. Moreover, we demonstrate one-shot transfer learning, using LoRA (Low-Rank Adaptation) to transfer Chinese calligraphy art styles to unseen characters and even out-of-domain symbols such as English letters and digits.