Abstract:We propose a training-free and robust solution to offer camera movement control for off-the-shelf video diffusion models. Unlike previous work, our method does not require any supervised finetuning on camera-annotated datasets or self-supervised training via data augmentation. Instead, it can be plugged and played with most pretrained video diffusion models and generate camera controllable videos with a single image or text prompt as input. The inspiration of our work comes from the layout prior that intermediate latents hold towards generated results, thus rearranging noisy pixels in them will make output content reallocated as well. As camera move could also be seen as a kind of pixel rearrangement caused by perspective change, videos could be reorganized following specific camera motion if their noisy latents change accordingly. Established on this, we propose our method CamTrol, which enables robust camera control for video diffusion models. It is achieved by a two-stage process. First, we model image layout rearrangement through explicit camera movement in 3D point cloud space. Second, we generate videos with camera motion using layout prior of noisy latents formed by a series of rearranged images. Extensive experiments have demonstrated the robustness our method holds in controlling camera motion of generated videos. Furthermore, we show that our method can produce impressive results in generating 3D rotation videos with dynamic content. Project page at https://lifedecoder.github.io/CamTrol/.
Abstract:Diffusion models have attained remarkable success in the domains of image generation and editing. It is widely recognized that employing larger inversion and denoising steps in diffusion model leads to improved image reconstruction quality. However, the editing performance of diffusion models tends to be no more satisfactory even with increasing denoising steps. The deficiency in editing could be attributed to the conditional Markovian property of the editing process, where errors accumulate throughout denoising steps. To tackle this challenge, we first propose an innovative framework where a rectifier module is incorporated to modulate diffusion model weights with residual features, thereby providing compensatory information to bridge the fidelity gap. Furthermore, we introduce a novel learning paradigm aimed at minimizing error propagation during the editing process, which trains the editing procedure in a manner similar to denoising score-matching. Extensive experiments demonstrate that our proposed framework and training strategy achieve high-fidelity reconstruction and editing results across various levels of denoising steps, meanwhile exhibits exceptional performance in terms of both quantitative metric and qualitative assessments. Moreover, we explore our model's generalization through several applications like image-to-image translation and out-of-domain image editing.
Abstract:In no-reference 360-degree image quality assessment (NR 360IQA), graph convolutional networks (GCNs), which model interactions between viewports through graphs, have achieved impressive performance. However, prevailing GCN-based NR 360IQA methods suffer from three main limitations. First, they only use high-level features of the distorted image to regress the quality score, while the human visual system (HVS) scores the image based on hierarchical features. Second, they simplify complex high-order interactions between viewports in a pairwise fashion through graphs. Third, in the graph construction, they only consider spatial locations of viewports, ignoring its content characteristics. Accordingly, to address these issues, we propose an adaptive hypergraph convolutional network for NR 360IQA, denoted as AHGCN. Specifically, we first design a multi-level viewport descriptor for extracting hierarchical representations from viewports. Then, we model interactions between viewports through hypergraphs, where each hyperedge connects two or more viewports. In the hypergraph construction, we build a location-based hyperedge and a content-based hyperedge for each viewport. Experimental results on two public 360IQA databases demonstrate that our proposed approach has a clear advantage over state-of-the-art full-reference and no-reference IQA models.