Abstract:Autonomous driving progress relies on large-scale annotated datasets. In this work, we explore the potential of generative models to produce vast quantities of freely-labeled data for autonomous driving applications and present SubjectDrive, the first model proven to scale generative data production in a way that could continuously improve autonomous driving applications. We investigate the impact of scaling up the quantity of generative data on the performance of downstream perception models and find that enhancing data diversity plays a crucial role in effectively scaling generative data production. Therefore, we have developed a novel model equipped with a subject control mechanism, which allows the generative model to leverage diverse external data sources for producing varied and useful data. Extensive evaluations confirm SubjectDrive's efficacy in generating scalable autonomous driving training data, marking a significant step toward revolutionizing data production methods in this field.
Abstract:Generating coherent and natural movement is the key challenge in video generation. This research proposes to condense video generation into a problem of motion generation, to improve the expressiveness of motion and make video generation more manageable. This can be achieved by breaking down the video generation process into latent motion generation and video reconstruction. We present a latent motion diffusion (LaMD) framework, which consists of a motion-decomposed video autoencoder and a diffusion-based motion generator, to implement this idea. Through careful design, the motion-decomposed video autoencoder can compress patterns in movement into a concise latent motion representation. Meanwhile, the diffusion-based motion generator is able to efficiently generate realistic motion on a continuous latent space under multi-modal conditions, at a cost that is similar to that of image diffusion models. Results show that LaMD generates high-quality videos with a wide range of motions, from stochastic dynamics to highly controllable movements. It achieves new state-of-the-art performance on benchmark datasets, including BAIR, Landscape and CATER-GENs, for Image-to-Video (I2V) and Text-Image-to-Video (TI2V) generation. The source code of LaMD will be made available soon.
Abstract:We propose a novel memory-enhancing mechanism for recurrent neural networks that exploits the effect of human cognitive appraisal in sequential assessment tasks. We conceptualize the memory-enhancing mechanism as Reinforcement Memory Unit (RMU) that contains an appraisal state together with two positive and negative reinforcement memories. The two reinforcement memories are decayed or strengthened by stronger stimulus. Thereafter the appraisal state is updated through the competition of positive and negative reinforcement memories. Therefore, RMU can learn the appraisal variation under violent changing of the stimuli for estimating human affective experience. As shown in the experiments of video quality assessment and video quality of experience tasks, the proposed reinforcement memory unit achieves superior performance among recurrent neural networks, that demonstrates the effectiveness of RMU for modeling human cognitive appraisal.
Abstract:Generating controllable videos conforming to user intentions is an appealing yet challenging topic in computer vision. To enable maneuverable control in line with user intentions, a novel video generation task, named Text-Image-to-Video generation (TI2V), is proposed. With both controllable appearance and motion, TI2V aims at generating videos from a static image and a text description. The key challenges of TI2V task lie both in aligning appearance and motion from different modalities, and in handling uncertainty in text descriptions. To address these challenges, we propose a Motion Anchor-based video GEnerator (MAGE) with an innovative motion anchor (MA) structure to store appearance-motion aligned representation. To model the uncertainty and increase the diversity, it further allows the injection of explicit condition and implicit randomness. Through three-dimensional axial transformers, MA is interacted with given image to generate next frames recursively with satisfying controllability and diversity. Accompanying the new task, we build two new video-text paired datasets based on MNIST and CATER for evaluation. Experiments conducted on these datasets verify the effectiveness of MAGE and show appealing potentials of TI2V task. Source code for model and datasets will be available soon.
Abstract:For a typical Scene Graph Generation (SGG) method, there is often a large gap in the performance of the predicates' head classes and tail classes. This phenomenon is mainly caused by the semantic overlap between different predicates as well as the long-tailed data distribution. In this paper, a Predicate Correlation Learning (PCL) method for SGG is proposed to address the above two problems by taking the correlation between predicates into consideration. To describe the semantic overlap between strong-correlated predicate classes, a Predicate Correlation Matrix (PCM) is defined to quantify the relationship between predicate pairs, which is dynamically updated to remove the matrix's long-tailed bias. In addition, PCM is integrated into a Predicate Correlation Loss function ($L_{PC}$) to reduce discouraging gradients of unannotated classes. The proposed method is evaluated on Visual Genome benchmark, where the performance of the tail classes is significantly improved when built on the existing methods.