Abstract:The increasing reliance on deep computer vision models that process sensitive data has raised significant privacy concerns, particularly regarding the exposure of intermediate results in hidden layers. While traditional privacy risk assessment techniques focus on protecting overall model outputs, they often overlook vulnerabilities within these intermediate representations. Current privacy risk assessment techniques typically rely on specific attack simulations to assess risk, which can be computationally expensive and incomplete. This paper introduces a novel approach to measuring privacy risks in deep computer vision models based on the Degrees of Freedom (DoF) and sensitivity of intermediate outputs, without requiring adversarial attack simulations. We propose a framework that leverages DoF to evaluate the amount of information retained in each layer and combines this with the rank of the Jacobian matrix to assess sensitivity to input variations. This dual analysis enables systematic measurement of privacy risks at various model layers. Our experimental validation on real-world datasets demonstrates the effectiveness of this approach in providing deeper insights into privacy risks associated with intermediate representations.
Abstract:In the domain of deep learning, the challenge of protecting sensitive data while maintaining model utility is significant. Traditional Differential Privacy (DP) techniques such as Differentially Private Stochastic Gradient Descent (DP-SGD) typically employ strategies like direct or per-sample adaptive gradient clipping. These methods, however, compromise model accuracy due to their critical influence on gradient handling, particularly neglecting the significant contribution of small gradients during later training stages. In this paper, we introduce an enhanced version of DP-SGD, named Differentially Private Per-sample Adaptive Scaling Clipping (DP-PSASC). This approach replaces traditional clipping with non-monotonous adaptive gradient scaling, which alleviates the need for intensive threshold setting and rectifies the disproportionate weighting of smaller gradients. Our contribution is twofold. First, we develop a novel gradient scaling technique that effectively assigns proper weights to gradients, particularly small ones, thus improving learning under differential privacy. Second, we integrate a momentum-based method into DP-PSASC to reduce bias from stochastic sampling, enhancing convergence rates. Our theoretical and empirical analyses confirm that DP-PSASC preserves privacy and delivers superior performance across diverse datasets, setting new standards for privacy-sensitive applications.
Abstract:We investigate the construction of gradient-guided conditional diffusion models for reconstructing private images, focusing on the adversarial interplay between differential privacy noise and the denoising capabilities of diffusion models. While current gradient-based reconstruction methods struggle with high-resolution images due to computational complexity and prior knowledge requirements, we propose two novel methods that require minimal modifications to the diffusion model's generation process and eliminate the need for prior knowledge. Our approach leverages the strong image generation capabilities of diffusion models to reconstruct private images starting from randomly generated noise, even when a small amount of differentially private noise has been added to the gradients. We also conduct a comprehensive theoretical analysis of the impact of differential privacy noise on the quality of reconstructed images, revealing the relationship among noise magnitude, the architecture of attacked models, and the attacker's reconstruction capability. Additionally, extensive experiments validate the effectiveness of our proposed methods and the accuracy of our theoretical findings, suggesting new directions for privacy risk auditing using conditional diffusion models.
Abstract:In the context of machine unlearning, the primary challenge lies in effectively removing traces of private data from trained models while maintaining model performance and security against privacy attacks like membership inference attacks. Traditional gradient-based unlearning methods often rely on extensive historical gradients, which becomes impractical with high unlearning ratios and may reduce the effectiveness of unlearning. Addressing these limitations, we introduce Mini-Unlearning, a novel approach that capitalizes on a critical observation: unlearned parameters correlate with retrained parameters through contraction mapping. Our method, Mini-Unlearning, utilizes a minimal subset of historical gradients and leverages this contraction mapping to facilitate scalable, efficient unlearning. This lightweight, scalable method significantly enhances model accuracy and strengthens resistance to membership inference attacks. Our experiments demonstrate that Mini-Unlearning not only works under higher unlearning ratios but also outperforms existing techniques in both accuracy and security, offering a promising solution for applications requiring robust unlearning capabilities.
Abstract:Gradient leakage has been identified as a potential source of privacy breaches in modern image processing systems, where the adversary can completely reconstruct the training images from leaked gradients. However, existing methods are restricted to reconstructing low-resolution images where data leakage risks of image processing systems are not sufficiently explored. In this paper, by exploiting diffusion models, we propose an innovative gradient-guided fine-tuning method and introduce a new reconstruction attack that is capable of stealing private, high-resolution images from image processing systems through leaked gradients where severe data leakage encounters. Our attack method is easy to implement and requires little prior knowledge. The experimental results indicate that current reconstruction attacks can steal images only up to a resolution of $128 \times 128$ pixels, while our attack method can successfully recover and steal images with resolutions up to $512 \times 512$ pixels. Our attack method significantly outperforms the SOTA attack baselines in terms of both pixel-wise accuracy and time efficiency of image reconstruction. Furthermore, our attack can render differential privacy ineffective to some extent.