Abstract:The strawberry farming is labor-intensive, particularly in tasks requiring dexterous manipulation such as picking occluded strawberries. To address this challenge, we present the Strawberry Robotic Operation Interface (SROI), an open-source device designed for collecting dexterous manipulation data in robotic strawberry farming. The SROI features a handheld unit with a modular end effector, a stereo robotic camera, enabling the easy collection of demonstration data in field environments. A data post-processing pipeline is introduced to extract spatial trajectories and gripper states from the collected data. Additionally, we release an open-source dataset of strawberry picking demonstrations to facilitate research in dexterous robotic manipulation. The SROI represents a step toward automating complex strawberry farming tasks, reducing reliance on manual labor.
Abstract:Autonomous agricultural vehicles (AAVs), including field robots and autonomous tractors, are becoming essential in modern farming by improving efficiency and reducing labor costs. A critical task in AAV operations is headland turning between crop rows. This task is challenging in orchards with limited headland space, irregular boundaries, operational constraints, and static obstacles. While traditional trajectory planning methods work well in arable farming, they often fail in cluttered orchard environments. This letter presents a novel trajectory planner that enhances the safety and efficiency of AAV headland maneuvers, leveraging advancements in autonomous driving. Our approach includes an efficient front-end algorithm and a high-performance back-end optimization. Applied to vehicles with various implements, it outperforms state-of-the-art methods in both standard and challenging orchard fields. This work bridges agricultural and autonomous driving technologies, facilitating a broader adoption of AAVs in complex orchards.
Abstract:In this paper, the causal bandit problem is investigated, in which the objective is to select an optimal sequence of interventions on nodes in a causal graph. It is assumed that the graph is governed by linear structural equations; it is further assumed that both the causal topology and the distribution of interventions are unknown. By exploiting the causal relationships between the nodes whose signals contribute to the reward, interventions are optimized. First, based on the difference between the two types of graph identification errors (false positives and negatives), a causal graph learning method is proposed, which strongly reduces sample complexity relative to the prior art by learning sub-graphs. Under the assumption of Gaussian exogenous inputs and minimum-mean squared error weight estimation, a new uncertainty bound tailored to the causal bandit problem is derived. This uncertainty bound drives an upper confidence bound based intervention selection to optimize the reward. To cope with non-stationary bandits, a sub-graph change detection mechanism is proposed, with high sample efficiency. Numerical results compare the new methodology to existing schemes and show a substantial performance improvement in both stationary and non-stationary settings. Compared to existing approaches, the proposed scheme takes 67% fewer samples to learn the causal structure and achieves an average reward gain of 85%.
Abstract:Breast cancer presents a significant healthcare challenge globally, demanding precise diagnostics and effective treatment strategies, where histopathological examination of Hematoxylin and Eosin (H&E) stained tissue sections plays a central role. Despite its importance, evaluating specific biomarkers like Human Epidermal Growth Factor Receptor 2 (HER2) for personalized treatment remains constrained by the resource-intensive nature of Immunohistochemistry (IHC). Recent strides in deep learning, particularly in image-to-image translation, offer promise in synthesizing IHC-HER2 slides from H\&E stained slides. However, existing methodologies encounter challenges, including managing multiple magnifications in pathology images and insufficient focus on crucial information during translation. To address these issues, we propose a novel model integrating attention mechanisms and multi-magnification information processing. Our model employs a multi-magnification processing strategy to extract and utilize information from various magnifications within pathology images, facilitating robust image translation. Additionally, an attention module within the generative network prioritizes critical information for image distribution translation while minimizing less pertinent details. Rigorous testing on a publicly available breast cancer dataset demonstrates superior performance compared to existing methods, establishing our model as a state-of-the-art solution in advancing pathology image translation from H&E to IHC staining.
Abstract:Biomedical image segmentation is a very important part in disease diagnosis. The term "colonic polyps" refers to polypoid lesions that occur on the surface of the colonic mucosa within the intestinal lumen. In clinical practice, early detection of polyps is conducted through colonoscopy examinations and biomedical image processing. Therefore, the accurate polyp image segmentation is of great significance in colonoscopy examinations. Convolutional Neural Network (CNN) is a common automatic segmentation method, but its main disadvantage is the long training time. Transformer utilizes a self-attention mechanism, which essentially assigns different importance weights to each piece of information, thus achieving high computational efficiency during segmentation. However, a potential drawback is the risk of information loss. In the study reported in this paper, based on the well-known hybridization principle, we proposed a method to combine CNN and Transformer to retain the strengths of both, and we applied this method to build a system called MugenNet for colonic polyp image segmentation. We conducted a comprehensive experiment to compare MugenNet with other CNN models on five publicly available datasets. The ablation experiment on MugentNet was conducted as well. The experimental results show that MugenNet achieves significantly higher processing speed and accuracy compared with CNN alone. The generalized implication with our work is a method to optimally combine two complimentary methods of machine learning.
Abstract:In contrastive self-supervised learning, positive samples are typically drawn from the same image but in different augmented views, resulting in a relatively limited source of positive samples. An effective way to alleviate this problem is to incorporate the relationship between samples, which involves including the top-K nearest neighbors of positive samples. However, the problem of false neighbors (i.e., neighbors that do not belong to the same category as the positive sample) is an objective but often overlooked challenge due to the query of neighbor samples without supervision information. In this paper, we present a simple self-supervised learning framework called Mixed Nearest-Neighbors for Self-Supervised Learning (MNN). MNN optimizes the influence of neighbor samples on the semantics of positive samples through an intuitive weighting approach and image mixture operations. The results demonstrate that MNN exhibits exceptional generalization performance and training efficiency on four benchmark datasets.
Abstract:Headland maneuvering is a crucial aspect of unmanned field operations for autonomous agricultural vehicles (AAVs). While motion planning for headland turning in open fields has been extensively studied and integrated into commercial auto-guidance systems, the existing methods primarily address scenarios with ample headland space and thus may not work in more constrained headland geometries. Commercial orchards often contain narrow and irregularly shaped headlands, which may include static obstacles,rendering the task of planning a smooth and collision-free turning trajectory difficult. To address this challenge, we propose an optimization-based motion planning algorithm for headland turning under geometrical constraints imposed by field geometry and obstacles.
Abstract:Self-supervised methods based on contrastive learning have achieved great success in unsupervised visual representation learning. However, most methods under this framework suffer from the problem of false negative samples. Inspired by mean shift for self-supervised learning, we propose a new simple framework, namely Multiple Sample Views and Queues (MSVQ). We jointly construct a soft label on-the-fly by introducing two complementary and symmetric ways: multiple augmented positive views and two momentum encoders forming various semantic features of negative samples. Two teacher networks perform similarity relationship calculations with negative samples and then transfer this knowledge to the student. Let the student mimic the similar relationship between the samples, thus giving the student a more flexible ability to identify false negative samples in the dataset. The classification results on four benchmark image datasets demonstrate the high effectiveness and efficiency of our approach compared to some classical methods. Source code and pretrained models are available at $\href{https://github.com/pc-cp/MSVQ}{this~http~URL}$.
Abstract:This paper introduces XFL, an industrial-grade federated learning project. XFL supports training AI models collaboratively on multiple devices, while utilizes homomorphic encryption, differential privacy, secure multi-party computation and other security technologies ensuring no leakage of data. XFL provides an abundant algorithms library, integrating a large number of pre-built, secure and outstanding federated learning algorithms, covering both the horizontally and vertically federated learning scenarios. Numerical experiments have shown the prominent performace of these algorithms. XFL builds a concise configuration interfaces with presettings for all federation algorithms, and supports the rapid deployment via docker containers.Therefore, we believe XFL is the most user-friendly and easy-to-develop federated learning framework. XFL is open-sourced, and both the code and documents are available at https://github.com/paritybit-ai/XFL.
Abstract:Machine learning systems have been extensively used as auxiliary tools in domains that require critical decision-making, such as healthcare and criminal justice. The explainability of decisions is crucial for users to develop trust on these systems. In recent years, the globally-consistent rule-based summary-explanation and its max-support (MS) problem have been proposed, which can provide explanations for particular decisions along with useful statistics of the dataset. However, globally-consistent summary-explanations with limited complexity typically have small supports, if there are any. In this paper, we propose a relaxed version of summary-explanation, i.e., the $q$-consistent summary-explanation, which aims to achieve greater support at the cost of slightly lower consistency. The challenge is that the max-support problem of $q$-consistent summary-explanation (MSqC) is much more complex than the original MS problem, resulting in over-extended solution time using standard branch-and-bound solvers. To improve the solution time efficiency, this paper proposes the weighted column sampling~(WCS) method based on solving smaller problems by sampling variables according to their simplified increase support (SIS) values. Experiments verify that solving MSqC with the proposed SIS-based WCS method is not only more scalable in efficiency, but also yields solutions with greater support and better global extrapolation effectiveness.