Abstract:How to best develop foundational models for time series forecasting remains an important open question. Tokenization is a crucial consideration in this effort: what is an effective discrete vocabulary for a real-valued sequential input? To address this question, we develop WaveToken, a wavelet-based tokenizer that allows models to learn complex representations directly in the space of time-localized frequencies. Our method first scales and decomposes the input time series, then thresholds and quantizes the wavelet coefficients, and finally pre-trains an autoregressive model to forecast coefficients for the forecast horizon. By decomposing coarse and fine structures in the inputs, wavelets provide an eloquent and compact language for time series forecasting that simplifies learning. Empirical results on a comprehensive benchmark, including 42 datasets for both in-domain and zero-shot settings, show that WaveToken: i) provides better accuracy than recently proposed foundation models for forecasting while using a much smaller vocabulary (1024 tokens), and performs on par or better than modern deep learning models trained specifically on each dataset; and ii) exhibits superior generalization capabilities, achieving the best average rank across all datasets for three complementary metrics. In addition, we show that our method can easily capture complex temporal patterns of practical relevance that are challenging for other recent pre-trained models, including trends, sparse spikes, and non-stationary time series with varying frequencies evolving over time.
Abstract:Generative models that satisfy hard constraints are crucial in many scientific and engineering applications where physical laws or system requirements must be strictly respected. However, many existing constrained generative models, especially those developed for computer vision, rely heavily on gradient information, often sparse or computationally expensive in fields like partial differential equations (PDEs). In this work, we introduce a novel framework for adapting pre-trained, unconstrained flow-matching models to satisfy constraints exactly in a zero-shot manner without requiring expensive gradient computations or fine-tuning. Our framework, ECI sampling, alternates between extrapolation (E), correction (C), and interpolation (I) stages during each iterative sampling step of flow matching sampling to ensure accurate integration of constraint information while preserving the validity of the generation. We demonstrate the effectiveness of our approach across various PDE systems, showing that ECI-guided generation strictly adheres to physical constraints and accurately captures complex distribution shifts induced by these constraints. Empirical results demonstrate that our framework consistently outperforms baseline approaches in various zero-shot constrained generation tasks and also achieves competitive results in the regression tasks without additional fine-tuning.
Abstract:While the Transformer architecture has achieved remarkable success across various domains, a thorough theoretical foundation explaining its optimization dynamics is yet to be fully developed. In this study, we aim to bridge this understanding gap by answering the following two core questions: (1) Which types of Transformer architectures allow Gradient Descent (GD) to achieve guaranteed convergence? and (2) Under what initial conditions and architectural specifics does the Transformer achieve rapid convergence during training? By analyzing the loss landscape of a single Transformer layer using Softmax and Gaussian attention kernels, our work provides concrete answers to these questions. Our findings demonstrate that, with appropriate weight initialization, GD can train a Transformer model (with either kernel type) to achieve a global optimal solution, especially when the input embedding dimension is large. Nonetheless, certain scenarios highlight potential pitfalls: training a Transformer using the Softmax attention kernel may sometimes lead to suboptimal local solutions. In contrast, the Gaussian attention kernel exhibits a much favorable behavior. Our empirical study further validate the theoretical findings.
Abstract:Remarkable progress in the development of Deep Learning Weather Prediction (DLWP) models positions them to become competitive with traditional numerical weather prediction (NWP) models. Indeed, a wide number of DLWP architectures -- based on various backbones, including U-Net, Transformer, Graph Neural Network (GNN), and Fourier Neural Operator (FNO) -- have demonstrated their potential at forecasting atmospheric states. However, due to differences in training protocols, forecast horizons, and data choices, it remains unclear which (if any) of these methods and architectures are most suitable for weather forecasting and for future model development. Here, we step back and provide a detailed empirical analysis, under controlled conditions, comparing and contrasting the most prominent DLWP models, along with their backbones. We accomplish this by predicting synthetic two-dimensional incompressible Navier-Stokes and real-world global weather dynamics. In terms of accuracy, memory consumption, and runtime, our results illustrate various tradeoffs. For example, on synthetic data, we observe favorable performance of FNO; and on the real-world WeatherBench dataset, our results demonstrate the suitability of ConvLSTM and SwinTransformer for short-to-mid-ranged forecasts. For long-ranged weather rollouts of up to 365 days, we observe superior stability and physical soundness in architectures that formulate a spherical data representation, i.e., GraphCast and Spherical FNO. In addition, we observe that all of these model backbones ``saturate,'' i.e., none of them exhibit so-called neural scaling, which highlights an important direction for future work on these and related models.
Abstract:How do we transfer the relevant knowledge from ever larger foundation models into small, task-specific downstream models that can run at much lower costs? Standard transfer learning using pre-trained weights as the initialization transfers limited information and commits us to often massive pre-trained architectures. This procedure also precludes combining multiple pre-trained models that learn complementary information. To address these shortcomings, we introduce Adaptive Feature Transfer (AFT). Instead of transferring weights, AFT operates purely on features, thereby decoupling the choice of the pre-trained model from the smaller downstream model. Rather than indiscriminately compressing all pre-trained features, AFT adaptively transfers pre-trained features that are most useful for performing the downstream task, using a simple regularization that adds minimal overhead. Across multiple vision, language, and multi-modal datasets, AFT achieves significantly better downstream performance compared to alternatives with a similar computational cost. Furthermore, AFT reliably translates improvement in pre-trained models into improvement in downstream performance, even if the downstream model is over $50\times$ smaller, and can effectively transfer complementary information learned by multiple pre-trained models.
Abstract:The question-answering (QA) capabilities of foundation models are highly sensitive to prompt variations, rendering their performance susceptible to superficial, non-meaning-altering changes. This vulnerability often stems from the model's preference or bias towards specific input characteristics, such as option position or superficial image features in multi-modal settings. We propose to rectify this bias directly in the model's internal representation. Our approach, SteerFair, finds the bias direction in the model's representation space and steers activation values away from it during inference. Specifically, we exploit the observation that bias often adheres to simple association rules, such as the spurious association between the first option and correctness likelihood. Next, we construct demonstrations of these rules from unlabeled samples and use them to identify the bias directions. We empirically show that SteerFair significantly reduces instruction-tuned model performance variance across prompt modifications on three benchmark tasks. Remarkably, our approach surpasses a supervised baseline with 100 labels by an average of 10.86% accuracy points and 12.95 score points and matches the performance with 500 labels.
Abstract:Large Language Models (LLMs) have shown great ability in solving traditional natural language tasks and elementary reasoning tasks with appropriate prompting techniques. However, their ability is still limited in solving complicated science problems. In this work, we aim to push the upper bound of the reasoning capability of LLMs by proposing a collaborative multi-agent, multi-reasoning-path (CoMM) prompting framework. Specifically, we prompt LLMs to play different roles in a problem-solving team, and encourage different role-play agents to collaboratively solve the target task. In particular, we discover that applying different reasoning paths for different roles is an effective strategy to implement few-shot prompting approaches in the multi-agent scenarios. Empirical results demonstrate the effectiveness of the proposed methods on two college-level science problems over competitive baselines. Our further analysis shows the necessity of prompting LLMs to play different roles or experts independently. We release the code at: https://github.com/amazon-science/comm-prompt
Abstract:In the realm of geospatial analysis, the diversity of remote sensors, encompassing both optical and microwave technologies, offers a wealth of distinct observational capabilities. Recognizing this, we present msGFM, a multisensor geospatial foundation model that effectively unifies data from four key sensor modalities. This integration spans an expansive dataset of two million multisensor images. msGFM is uniquely adept at handling both paired and unpaired sensor data. For data originating from identical geolocations, our model employs an innovative cross-sensor pretraining approach in masked image modeling, enabling the synthesis of joint representations from diverse sensors. msGFM, incorporating four remote sensors, upholds strong performance, forming a comprehensive model adaptable to various sensor types. msGFM has demonstrated enhanced proficiency in a range of both single-sensor and multisensor downstream tasks. These include scene classification, segmentation, cloud removal, and pan-sharpening. A key discovery of our research is that representations derived from natural images are not always compatible with the distinct characteristics of geospatial remote sensors, underscoring the limitations of existing representations in this field. Our work can serve as a guide for developing multisensor geospatial pretraining models, paving the way for more advanced geospatial capabilities.
Abstract:Retrieval-augmented generation (RAG) can enhance the generation quality of large language models (LLMs) by incorporating external token databases. However, retrievals from large databases can constitute a substantial portion of the overall generation time, particularly when retrievals are periodically performed to align the retrieved content with the latest states of generation. In this paper, we introduce PipeRAG, a novel algorithm-system co-design approach to reduce generation latency and enhance generation quality. PipeRAG integrates (1) pipeline parallelism to enable concurrent retrieval and generation processes, (2) flexible retrieval intervals to maximize the efficiency of pipeline parallelism, and (3) a performance model to automatically balance retrieval quality and latency based on the generation states and underlying hardware. Our evaluation shows that, by combining the three aforementioned methods, PipeRAG achieves up to 2.6$\times$ speedup in end-to-end generation latency while improving generation quality. These promising results showcase the effectiveness of co-designing algorithms with underlying systems, paving the way for the adoption of PipeRAG in future RAG systems.
Abstract:In this work, we introduce Context-Aware MultiModal Learner (CaMML), for tuning large multimodal models (LMMs). CaMML, a lightweight module, is crafted to seamlessly integrate multimodal contextual samples into large models, thereby empowering the model to derive knowledge from analogous, domain-specific, up-to-date information and make grounded inferences. Importantly, CaMML is highly scalable and can efficiently handle lengthy multimodal context examples owing to its hierarchical design. Based on CaMML, we have developed two multimodal models, CaMML-7B and CaMML-13B, that have shown exceptional performance across an array of benchmark datasets for multimodal tasks. Remarkably, CaMML-13B achieves the state-of-the-art performance on over ten widely recognized multimodal benchmark datasets, surpassing LLaVA-1.5 (13B) with a noticeable margin, without integration of any external resources. Moreover, we have conducted extensive ablative studies to inspect the inner workings of CaMML and performed qualitative analyses to showcase its effectiveness in handling real-world challenging cases.