Abstract:Performative prediction (PP) is a framework that captures distribution shifts that occur during the training of machine learning models due to their deployment. As the trained model is used, its generated data could cause the model to evolve, leading to deviations from the original data distribution. The impact of such model-induced distribution shifts in the federated learning (FL) setup remains unexplored despite being increasingly likely to transpire in real-life use cases. Although Jin et al. (2024) recently extended PP to FL in a straightforward manner, the resulting model only converges to a performative stable point, which may be far from optimal. The methods in Izzo et al. (2021); Miller et al. (2021) can find a performative optimal point in centralized settings, but they require the performative risk to be convex and the training data to be noiseless, assumptions often violated in realistic FL systems. This paper overcomes all of these shortcomings and proposes Performative robust optimal Federated Learning (ProFL), an algorithm that finds performative optimal points in FL from noisy and contaminated data. We present the convergence analysis under the Polyak-Lojasiewicz condition, which applies to non-convex objectives. Extensive experiments on multiple datasets validate our proposed algorithms' efficiency.
Abstract:To accommodate new applications such as extended reality, fully autonomous vehicular networks and the metaverse, next generation wireless networks are going to be subject to much more stringent performance requirements than the fifth-generation (5G) in terms of data rates, reliability, latency, and connectivity. It is thus necessary to develop next generation advanced transceiver (NGAT) technologies for efficient signal transmission and reception. In this tutorial, we explore the evolution of NGAT from three different perspectives. Specifically, we first provide an overview of new-field NGAT technology, which shifts from conventional far-field channel models to new near-field channel models. Then, three new-form NGAT technologies and their design challenges are presented, including reconfigurable intelligent surfaces, flexible antennas, and holographic multi-input multi-output (MIMO) systems. Subsequently, we discuss recent advances in semantic-aware NGAT technologies, which can utilize new metrics for advanced transceiver designs. Finally, we point out other promising transceiver technologies for future research.
Abstract:We consider cooperative semantic text communications facilitated by a relay node. We propose two types of semantic forwarding: semantic lossy forwarding (SLF) and semantic predict-and-forward (SPF). Both are machine learning aided approaches, and, in particular, utilize attention mechanisms at the relay to establish a dynamic semantic state, updated upon receiving a new source signal. In the SLF model, the semantic state is used to decode the received source signal; whereas in the SPF model, it is used to predict the next source signal, enabling proactive forwarding. Our proposed forwarding schemes do not need any channel state information and exhibit consistent performance regardless of the relay's position. Our results demonstrate that the proposed semantic forwarding techniques outperform conventional semantic-agnostic baselines.
Abstract:Over-the-air federated learning (OTA-FL) provides bandwidth-efficient learning by leveraging the inherent superposition property of wireless channels. Personalized federated learning balances performance for users with diverse datasets, addressing real-life data heterogeneity. We propose the first personalized OTA-FL scheme through multi-task learning, assisted by personal reconfigurable intelligent surfaces (RIS) for each user. We take a cross-layer approach that optimizes communication and computation resources for global and personalized tasks in time-varying channels with imperfect channel state information, using multi-task learning for non-i.i.d data. Our PROAR-PFed algorithm adaptively designs power, local iterations, and RIS configurations. We present convergence analysis for non-convex objectives and demonstrate that PROAR-PFed outperforms state-of-the-art on the Fashion-MNIST dataset.
Abstract:This paper explores opportunities and challenges of task (goal)-oriented and semantic communications for next-generation (NextG) communication networks through the integration of multi-task learning. This approach employs deep neural networks representing a dedicated encoder at the transmitter and multiple task-specific decoders at the receiver, collectively trained to handle diverse tasks including semantic information preservation, source input reconstruction, and integrated sensing and communications. To extend the applicability from point-to-point links to multi-receiver settings, we envision the deployment of decoders at various receivers, where decentralized learning addresses the challenges of communication load and privacy concerns, leveraging federated learning techniques that distribute model updates across decentralized nodes. However, the efficacy of this approach is contingent on the robustness of the employed deep learning models. We scrutinize potential vulnerabilities stemming from adversarial attacks during both training and testing phases. These attacks aim to manipulate both the inputs at the encoder at the transmitter and the signals received over the air on the receiver side, highlighting the importance of fortifying semantic communications against potential multi-domain exploits. Overall, the joint and robust design of task-oriented communications, semantic communications, and integrated sensing and communications in a multi-task learning framework emerges as the key enabler for context-aware, resource-efficient, and secure communications ultimately needed in NextG network systems.
Abstract:This paper introduces a deep learning approach to dynamic spectrum access, leveraging the synergy of multi-modal image and spectrum data for the identification of potential transmitters. We consider an edge device equipped with a camera that is taking images of potential objects such as vehicles that may harbor transmitters. Recognizing the computational constraints and trust issues associated with on-device computation, we propose a collaborative system wherein the edge device communicates selectively processed information to a trusted receiver acting as a fusion center, where a decision is made to identify whether a potential transmitter is present, or not. To achieve this, we employ task-oriented communications, utilizing an encoder at the transmitter for joint source coding, channel coding, and modulation. This architecture efficiently transmits essential information of reduced dimension for object classification. Simultaneously, the transmitted signals may reflect off objects and return to the transmitter, allowing for the collection of target sensing data. Then the collected sensing data undergoes a second round of encoding at the transmitter, with the reduced-dimensional information communicated back to the fusion center through task-oriented communications. On the receiver side, a decoder performs the task of identifying a transmitter by fusing data received through joint sensing and task-oriented communications. The two encoders at the transmitter and the decoder at the receiver are jointly trained, enabling a seamless integration of image classification and wireless signal detection. Using AWGN and Rayleigh channel models, we demonstrate the effectiveness of the proposed approach, showcasing high accuracy in transmitter identification across diverse channel conditions while sustaining low latency in decision making.
Abstract:This paper explores the integration of deep learning techniques for joint sensing and communications, with an extension to semantic communications. The integrated system comprises a transmitter and receiver operating over a wireless channel, subject to noise and fading effects. The transmitter employs a deep neural network, namely an encoder, for joint operations of source coding, channel coding, and modulation, while the receiver utilizes another deep neural network, namely a decoder, for joint operations of demodulation, channel decoding, and source decoding to reconstruct the data samples. The transmitted signal serves a dual purpose, supporting communication with the receiver and enabling sensing. When a target is present, the reflected signal is received, and another deep neural network decoder is utilized for sensing. This decoder is responsible for detecting the target's presence and determining its range. All these deep neural networks, including one encoder and two decoders, undergo joint training through multi-task learning, considering data and channel characteristics. This paper extends to incorporate semantic communications by introducing an additional deep neural network, another decoder at the receiver, operating as a task classifier. This decoder evaluates the fidelity of label classification for received signals, enhancing the integration of semantics within the communication process. The study presents results based on using the CIFAR-10 as the input data and accounting for channel effects like Additive White Gaussian Noise (AWGN) and Rayleigh fading. The results underscore the effectiveness of multi-task deep learning in achieving high-fidelity joint sensing and semantic communications.
Abstract:Over-the-air federated learning (OTA-FL) exploits the inherent superposition property of wireless channels to integrate the communication and model aggregation. Though a naturally promising framework for wireless federated learning, it requires care to mitigate physical layer impairments. In this work, we consider a heterogeneous edge-intelligent network with different edge device resources and non-i.i.d. user dataset distributions, under a general non-convex learning objective. We leverage the Reconfigurable Intelligent Surface (RIS) technology to augment OTA-FL system over simultaneous time varying uplink and downlink noisy communication channels under imperfect CSI scenario. We propose a cross-layer algorithm that jointly optimizes RIS configuration, communication and computation resources in this general realistic setting. Specifically, we design dynamic local update steps in conjunction with RIS phase shifts and transmission power to boost learning performance. We present a convergence analysis of the proposed algorithm, and show that it outperforms the existing unified approach under heterogeneous system and imperfect CSI in numerical results.
Abstract:We study semantic compression for text where meanings contained in the text are conveyed to a source decoder, e.g., for classification. The main motivator to move to such an approach of recovering the meaning without requiring exact reconstruction is the potential resource savings, both in storage and in conveying the information to another node. Towards this end, we propose semantic quantization and compression approaches for text where we utilize sentence embeddings and the semantic distortion metric to preserve the meaning. Our results demonstrate that the proposed semantic approaches result in substantial (orders of magnitude) savings in the required number of bits for message representation at the expense of very modest accuracy loss compared to the semantic agnostic baseline. We compare the results of proposed approaches and observe that resource savings enabled by semantic quantization can be further amplified by semantic clustering. Importantly, we observe the generalizability of the proposed methodology which produces excellent results on many benchmark text classification datasets with a diverse array of contexts.
Abstract:Over-the-air federated learning (OTA-FL) integrates communication and model aggregation by exploiting the innate superposition property of wireless channels. The approach renders bandwidth efficient learning, but requires care in handling the wireless physical layer impairments. In this paper, federated edge learning is considered for a network that is heterogeneous with respect to client (edge node) data set distributions and individual client resources, under a general non-convex learning objective. We augment the wireless OTA-FL system with a Reconfigurable Intelligent Surface (RIS) to enable a propagation environment with improved learning performance in a realistic time varying physical layer. Our approach is a cross-layer perspective that jointly optimizes communication, computation and learning resources, in this general heterogeneous setting. We adapt the local computation steps and transmission power of the clients in conjunction with the RIS phase shifts. The resulting joint communication and learning algorithm, RIS-assisted Over-the-air Adaptive Resource Allocation for Federated learning (ROAR-Fed) is shown to be convergent in this general setting. Numerical results demonstrate the effectiveness of ROAR-Fed under heterogeneous (non i.i.d.) data and imperfect CSI, indicating the advantage of RIS assisted learning in this general set up.