Abstract:In this paper, we address task-oriented (or goal-oriented) communications where an encoder at the transmitter learns compressed latent representations of data, which are then transmitted over a wireless channel. At the receiver, a decoder performs a machine learning task, specifically for classifying the received signals. The deep neural networks corresponding to the encoder-decoder pair are jointly trained, taking both channel and data characteristics into account. Our objective is to achieve high accuracy in completing the underlying task while minimizing the number of channel uses determined by the encoder's output size. To this end, we propose a multi-round, multi-task learning (MRMTL) approach for the dynamic update of channel uses in multi-round transmissions. The transmitter incrementally sends an increasing number of encoded samples over the channel based on the feedback from the receiver, and the receiver utilizes the signals from a previous round to enhance the task performance, rather than only considering the latest transmission. This approach employs multi-task learning to jointly optimize accuracy across varying number of channel uses, treating each configuration as a distinct task. By evaluating the confidence of the receiver in task decisions, MRMTL decides on whether to allocate additional channel uses in multiple rounds. We characterize both the accuracy and the delay (total number of channel uses) of MRMTL, demonstrating that it achieves the accuracy close to that of conventional methods requiring large numbers of channel uses, but with reduced delay by incorporating signals from a prior round. We consider the CIFAR-10 dataset, convolutional neural network architectures, and AWGN and Rayleigh channel models for performance evaluation. We show that MRMTL significantly improves the efficiency of task-oriented communications, balancing accuracy and latency effectively.
Abstract:Radio frequency (RF) communication has been an important part of civil and military communication for decades. With the increasing complexity of wireless environments and the growing number of devices sharing the spectrum, it has become critical to efficiently manage and classify the signals that populate these frequencies. In such scenarios, the accurate classification of wireless signals is essential for effective spectrum management, signal interception, and interference mitigation. However, the classification of wireless RF signals often faces challenges due to the limited availability of labeled training data, especially under low signal-to-noise ratio (SNR) conditions. To address these challenges, this paper proposes the use of a Vector-Quantized Variational Autoencoder (VQ-VAE) to augment training data, thereby enhancing the performance of a baseline wireless classifier. The VQ-VAE model generates high-fidelity synthetic RF signals, increasing the diversity and fidelity of the training dataset by capturing the complex variations inherent in RF communication signals. Our experimental results show that incorporating VQ-VAE-generated data significantly improves the classification accuracy of the baseline model, particularly in low SNR conditions. This augmentation leads to better generalization and robustness of the classifier, overcoming the constraints imposed by limited real-world data. By improving RF signal classification, the proposed approach enhances the efficacy of wireless communication in both civil and tactical settings, ensuring reliable and secure operations. This advancement supports critical decision-making and operational readiness in environments where communication fidelity is essential.
Abstract:Deep Reinforcement Learning (DRL) has been highly effective in learning from and adapting to RF environments and thus detecting and mitigating jamming effects to facilitate reliable wireless communications. However, traditional DRL methods are susceptible to catastrophic forgetting (namely forgetting old tasks when learning new ones), especially in dynamic wireless environments where jammer patterns change over time. This paper considers an anti-jamming system and addresses the challenge of catastrophic forgetting in DRL applied to jammer detection and mitigation. First, we demonstrate the impact of catastrophic forgetting in DRL when applied to jammer detection and mitigation tasks, where the network forgets previously learned jammer patterns while adapting to new ones. This catastrophic interference undermines the effectiveness of the system, particularly in scenarios where the environment is non-stationary. We present a method that enables the network to retain knowledge of old jammer patterns while learning to handle new ones. Our approach substantially reduces catastrophic forgetting, allowing the anti-jamming system to learn new tasks without compromising its ability to perform previously learned tasks effectively. Furthermore, we introduce a systematic methodology for sequentially learning tasks in the anti-jamming framework. By leveraging continual DRL techniques based on PackNet, we achieve superior anti-jamming performance compared to standard DRL methods. Our proposed approach not only addresses catastrophic forgetting but also enhances the adaptability and robustness of the system in dynamic jamming environments. We demonstrate the efficacy of our method in preserving knowledge of past jammer patterns, learning new tasks efficiently, and achieving superior anti-jamming performance compared to traditional DRL approaches.
Abstract:Integrated Sensing and Communication (ISAC) represents a transformative approach within 5G and beyond, aiming to merge wireless communication and sensing functionalities into a unified network infrastructure. This integration offers enhanced spectrum efficiency, real-time situational awareness, cost and energy reductions, and improved operational performance. ISAC provides simultaneous communication and sensing capabilities, enhancing the ability to detect, track, and respond to spectrum dynamics and potential threats in complex environments. In this paper, we introduce I-SCOUT, an innovative ISAC solution designed to uncover moving targets in NextG networks. We specifically repurpose the Positioning Reference Signal (PRS) of the 5G waveform, exploiting its distinctive autocorrelation characteristics for environment sensing. The reflected signals from moving targets are processed to estimate both the range and velocity of these targets using the cross ambiguity function (CAF). We conduct an in-depth analysis of the tradeoff between sensing and communication functionalities, focusing on the allocation of PRSs for ISAC purposes. Our study reveals that the number of PRSs dedicated to ISAC has a significant impact on the system's performance, necessitating a careful balance to optimize both sensing accuracy and communication efficiency. Our results demonstrate that I-SCOUT effectively leverages ISAC to accurately determine the range and velocity of moving targets. Moreover, I-SCOUT is capable of distinguishing between multiple targets within a group, showcasing its potential for complex scenarios. These findings underscore the viability of ISAC in enhancing the capabilities of NextG networks, for both commercial and tactical applications where precision and reliability are critical.
Abstract:This paper explores opportunities and challenges of task (goal)-oriented and semantic communications for next-generation (NextG) communication networks through the integration of multi-task learning. This approach employs deep neural networks representing a dedicated encoder at the transmitter and multiple task-specific decoders at the receiver, collectively trained to handle diverse tasks including semantic information preservation, source input reconstruction, and integrated sensing and communications. To extend the applicability from point-to-point links to multi-receiver settings, we envision the deployment of decoders at various receivers, where decentralized learning addresses the challenges of communication load and privacy concerns, leveraging federated learning techniques that distribute model updates across decentralized nodes. However, the efficacy of this approach is contingent on the robustness of the employed deep learning models. We scrutinize potential vulnerabilities stemming from adversarial attacks during both training and testing phases. These attacks aim to manipulate both the inputs at the encoder at the transmitter and the signals received over the air on the receiver side, highlighting the importance of fortifying semantic communications against potential multi-domain exploits. Overall, the joint and robust design of task-oriented communications, semantic communications, and integrated sensing and communications in a multi-task learning framework emerges as the key enabler for context-aware, resource-efficient, and secure communications ultimately needed in NextG network systems.
Abstract:This paper studies the poisoning attack and defense interactions in a federated learning (FL) system, specifically in the context of wireless signal classification using deep learning for next-generation (NextG) communications. FL collectively trains a global model without the need for clients to exchange their data samples. By leveraging geographically dispersed clients, the trained global model can be used for incumbent user identification, facilitating spectrum sharing. However, in this distributed learning system, the presence of malicious clients introduces the risk of poisoning the training data to manipulate the global model through falsified local model exchanges. To address this challenge, a proactive defense mechanism is employed in this paper to make informed decisions regarding the admission or rejection of clients participating in FL systems. Consequently, the attack-defense interactions are modeled as a game, centered around the underlying admission and poisoning decisions. First, performance bounds are established, encompassing the best and worst strategies for attackers and defenders. Subsequently, the attack and defense utilities are characterized within the Nash equilibrium, where no player can unilaterally improve its performance given the fixed strategies of others. The results offer insights into novel operational modes that safeguard FL systems against poisoning attacks by quantifying the performance of both attacks and defenses in the context of NextG communications.
Abstract:Low-Power Wide-Area Network (LPWAN) technologies, such as LoRa, have gained significant attention for their ability to enable long-range, low-power communication for Internet of Things (IoT) applications. However, the security of LoRa networks remains a major concern, particularly in scenarios where device identification and classification of legitimate and spoofed signals are crucial. This paper studies a deep learning framework to address these challenges, considering LoRa device identification and legitimate vs. rogue LoRa device classification tasks. A deep neural network (DNN), either a convolutional neural network (CNN) or feedforward neural network (FNN), is trained for each task by utilizing real experimental I/Q data for LoRa signals, while rogue signals are generated by using kernel density estimation (KDE) of received signals by rogue devices. Fast Gradient Sign Method (FGSM)-based adversarial attacks are considered for LoRa signal classification tasks using deep learning models. The impact of these attacks is assessed on the performance of two tasks, namely device identification and legitimate vs. rogue device classification, by utilizing separate or common perturbations against these signal classification tasks. Results presented in this paper quantify the level of transferability of adversarial attacks on different LoRa signal classification tasks as a major vulnerability and highlight the need to make IoT applications robust to adversarial attacks.
Abstract:This paper introduces a deep learning approach to dynamic spectrum access, leveraging the synergy of multi-modal image and spectrum data for the identification of potential transmitters. We consider an edge device equipped with a camera that is taking images of potential objects such as vehicles that may harbor transmitters. Recognizing the computational constraints and trust issues associated with on-device computation, we propose a collaborative system wherein the edge device communicates selectively processed information to a trusted receiver acting as a fusion center, where a decision is made to identify whether a potential transmitter is present, or not. To achieve this, we employ task-oriented communications, utilizing an encoder at the transmitter for joint source coding, channel coding, and modulation. This architecture efficiently transmits essential information of reduced dimension for object classification. Simultaneously, the transmitted signals may reflect off objects and return to the transmitter, allowing for the collection of target sensing data. Then the collected sensing data undergoes a second round of encoding at the transmitter, with the reduced-dimensional information communicated back to the fusion center through task-oriented communications. On the receiver side, a decoder performs the task of identifying a transmitter by fusing data received through joint sensing and task-oriented communications. The two encoders at the transmitter and the decoder at the receiver are jointly trained, enabling a seamless integration of image classification and wireless signal detection. Using AWGN and Rayleigh channel models, we demonstrate the effectiveness of the proposed approach, showcasing high accuracy in transmitter identification across diverse channel conditions while sustaining low latency in decision making.
Abstract:Unmanned aerial vehicles (UAVs) are expected to be an integral part of wireless networks, and determining collision-free trajectory in multi-UAV non-cooperative scenarios while collecting data from distributed Internet of Things (IoT) nodes is a challenging task. In this paper, we consider a path planning optimization problem to maximize the collected data from multiple IoT nodes under realistic constraints. The considered multi-UAV non-cooperative scenarios involve random number of other UAVs in addition to the typical UAV, and UAVs do not communicate or share information among each other. We translate the problem into a Markov decision process (MDP) with parameterized states, permissible actions, and detailed reward functions. Dueling double deep Q-network (D3QN) is proposed to learn the decision making policy for the typical UAV, without any prior knowledge of the environment (e.g., channel propagation model and locations of the obstacles) and other UAVs (e.g., their missions, movements, and policies). The proposed algorithm can adapt to various missions in various scenarios, e.g., different numbers and positions of IoT nodes, different amount of data to be collected, and different numbers and positions of other UAVs. Numerical results demonstrate that real-time navigation can be efficiently performed with high success rate, high data collection rate, and low collision rate.
Abstract:This paper explores the integration of deep learning techniques for joint sensing and communications, with an extension to semantic communications. The integrated system comprises a transmitter and receiver operating over a wireless channel, subject to noise and fading effects. The transmitter employs a deep neural network, namely an encoder, for joint operations of source coding, channel coding, and modulation, while the receiver utilizes another deep neural network, namely a decoder, for joint operations of demodulation, channel decoding, and source decoding to reconstruct the data samples. The transmitted signal serves a dual purpose, supporting communication with the receiver and enabling sensing. When a target is present, the reflected signal is received, and another deep neural network decoder is utilized for sensing. This decoder is responsible for detecting the target's presence and determining its range. All these deep neural networks, including one encoder and two decoders, undergo joint training through multi-task learning, considering data and channel characteristics. This paper extends to incorporate semantic communications by introducing an additional deep neural network, another decoder at the receiver, operating as a task classifier. This decoder evaluates the fidelity of label classification for received signals, enhancing the integration of semantics within the communication process. The study presents results based on using the CIFAR-10 as the input data and accounting for channel effects like Additive White Gaussian Noise (AWGN) and Rayleigh fading. The results underscore the effectiveness of multi-task deep learning in achieving high-fidelity joint sensing and semantic communications.