Abstract:Radio frequency (RF) communication has been an important part of civil and military communication for decades. With the increasing complexity of wireless environments and the growing number of devices sharing the spectrum, it has become critical to efficiently manage and classify the signals that populate these frequencies. In such scenarios, the accurate classification of wireless signals is essential for effective spectrum management, signal interception, and interference mitigation. However, the classification of wireless RF signals often faces challenges due to the limited availability of labeled training data, especially under low signal-to-noise ratio (SNR) conditions. To address these challenges, this paper proposes the use of a Vector-Quantized Variational Autoencoder (VQ-VAE) to augment training data, thereby enhancing the performance of a baseline wireless classifier. The VQ-VAE model generates high-fidelity synthetic RF signals, increasing the diversity and fidelity of the training dataset by capturing the complex variations inherent in RF communication signals. Our experimental results show that incorporating VQ-VAE-generated data significantly improves the classification accuracy of the baseline model, particularly in low SNR conditions. This augmentation leads to better generalization and robustness of the classifier, overcoming the constraints imposed by limited real-world data. By improving RF signal classification, the proposed approach enhances the efficacy of wireless communication in both civil and tactical settings, ensuring reliable and secure operations. This advancement supports critical decision-making and operational readiness in environments where communication fidelity is essential.
Abstract:Deep Reinforcement Learning (DRL) has been highly effective in learning from and adapting to RF environments and thus detecting and mitigating jamming effects to facilitate reliable wireless communications. However, traditional DRL methods are susceptible to catastrophic forgetting (namely forgetting old tasks when learning new ones), especially in dynamic wireless environments where jammer patterns change over time. This paper considers an anti-jamming system and addresses the challenge of catastrophic forgetting in DRL applied to jammer detection and mitigation. First, we demonstrate the impact of catastrophic forgetting in DRL when applied to jammer detection and mitigation tasks, where the network forgets previously learned jammer patterns while adapting to new ones. This catastrophic interference undermines the effectiveness of the system, particularly in scenarios where the environment is non-stationary. We present a method that enables the network to retain knowledge of old jammer patterns while learning to handle new ones. Our approach substantially reduces catastrophic forgetting, allowing the anti-jamming system to learn new tasks without compromising its ability to perform previously learned tasks effectively. Furthermore, we introduce a systematic methodology for sequentially learning tasks in the anti-jamming framework. By leveraging continual DRL techniques based on PackNet, we achieve superior anti-jamming performance compared to standard DRL methods. Our proposed approach not only addresses catastrophic forgetting but also enhances the adaptability and robustness of the system in dynamic jamming environments. We demonstrate the efficacy of our method in preserving knowledge of past jammer patterns, learning new tasks efficiently, and achieving superior anti-jamming performance compared to traditional DRL approaches.
Abstract:Integrated Sensing and Communication (ISAC) represents a transformative approach within 5G and beyond, aiming to merge wireless communication and sensing functionalities into a unified network infrastructure. This integration offers enhanced spectrum efficiency, real-time situational awareness, cost and energy reductions, and improved operational performance. ISAC provides simultaneous communication and sensing capabilities, enhancing the ability to detect, track, and respond to spectrum dynamics and potential threats in complex environments. In this paper, we introduce I-SCOUT, an innovative ISAC solution designed to uncover moving targets in NextG networks. We specifically repurpose the Positioning Reference Signal (PRS) of the 5G waveform, exploiting its distinctive autocorrelation characteristics for environment sensing. The reflected signals from moving targets are processed to estimate both the range and velocity of these targets using the cross ambiguity function (CAF). We conduct an in-depth analysis of the tradeoff between sensing and communication functionalities, focusing on the allocation of PRSs for ISAC purposes. Our study reveals that the number of PRSs dedicated to ISAC has a significant impact on the system's performance, necessitating a careful balance to optimize both sensing accuracy and communication efficiency. Our results demonstrate that I-SCOUT effectively leverages ISAC to accurately determine the range and velocity of moving targets. Moreover, I-SCOUT is capable of distinguishing between multiple targets within a group, showcasing its potential for complex scenarios. These findings underscore the viability of ISAC in enhancing the capabilities of NextG networks, for both commercial and tactical applications where precision and reliability are critical.
Abstract:In this work, we consider a status update system with a sensor and a receiver. The status update information is sampled by the sensor and then forwarded to the receiver through a channel with non-stationary delay distribution. The data freshness at the receiver is quantified by the Age-of-Information (AoI). The goal is to design an online sampling strategy that can minimize the average AoI when the non-stationary delay distribution is unknown. Assuming that channel delay distribution may change over time, to minimize the average AoI, we propose a joint stochastic approximation and non-parametric change point detection algorithm that can: (1) learn the optimum update threshold when the delay distribution remains static; (2) detect the change in transmission delay distribution quickly and then restart the learning process. Simulation results show that the proposed algorithm can quickly detect the delay changes, and the average AoI obtained by the proposed policy converges to the minimum AoI.
Abstract:360-degree panoramic videos have gained considerable attention in recent years due to the rapid development of head-mounted displays (HMDs) and panoramic cameras. One major problem in streaming panoramic videos is that panoramic videos are much larger in size compared to traditional ones. Moreover, the user devices are often in a wireless environment, with limited battery, computation power, and bandwidth. To reduce resource consumption, researchers have proposed ways to predict the users' viewports so that only part of the entire video needs to be transmitted from the server. However, the robustness of such prediction approaches has been overlooked in the literature: it is usually assumed that only a few models, pre-trained on past users' experiences, are applied for prediction to all users. We observe that those pre-trained models can perform poorly for some users because they might have drastically different behaviors from the majority, and the pre-trained models cannot capture the features in unseen videos. In this work, we propose a novel meta learning based viewport prediction paradigm to alleviate the worst prediction performance and ensure the robustness of viewport prediction. This paradigm uses two machine learning models, where the first model predicts the viewing direction, and the second model predicts the minimum video prefetch size that can include the actual viewport. We first train two meta models so that they are sensitive to new training data, and then quickly adapt them to users while they are watching the videos. Evaluation results reveal that the meta models can adapt quickly to each user, and can significantly increase the prediction accuracy, especially for the worst-performing predictions.