This paper explores opportunities and challenges of task (goal)-oriented and semantic communications for next-generation (NextG) communication networks through the integration of multi-task learning. This approach employs deep neural networks representing a dedicated encoder at the transmitter and multiple task-specific decoders at the receiver, collectively trained to handle diverse tasks including semantic information preservation, source input reconstruction, and integrated sensing and communications. To extend the applicability from point-to-point links to multi-receiver settings, we envision the deployment of decoders at various receivers, where decentralized learning addresses the challenges of communication load and privacy concerns, leveraging federated learning techniques that distribute model updates across decentralized nodes. However, the efficacy of this approach is contingent on the robustness of the employed deep learning models. We scrutinize potential vulnerabilities stemming from adversarial attacks during both training and testing phases. These attacks aim to manipulate both the inputs at the encoder at the transmitter and the signals received over the air on the receiver side, highlighting the importance of fortifying semantic communications against potential multi-domain exploits. Overall, the joint and robust design of task-oriented communications, semantic communications, and integrated sensing and communications in a multi-task learning framework emerges as the key enabler for context-aware, resource-efficient, and secure communications ultimately needed in NextG network systems.