LIUM
Abstract:Transition Relevance Places are defined as the end of an utterance where the interlocutor may take the floor without interrupting the current speaker --i.e., a place where the turn is terminal. Analyzing turn terminality is useful to study the dynamic of turn-taking in spontaneous conversations. This paper presents an automatic classification of spoken utterances as Terminal or Non-Terminal in multi-speaker settings. We compared audio, text, and fusions of both approaches on a French corpus of TV and Radio extracts annotated with turn-terminality information at each speaker change. Our models are based on pre-trained self-supervised representations. We report results for different fusion strategies and varying context sizes. This study also questions the problem of performance variability by analyzing the differences in results for multiple training runs with random initialization. The measured accuracy would allow the use of these models for large-scale analysis of turn-taking.
Abstract:This paper presents a semi-automatic approach to create a diachronic corpus of voices balanced for speaker's age, gender, and recording period, according to 32 categories (2 genders, 4 age ranges and 4 recording periods). Corpora were selected at French National Institute of Audiovisual (INA) to obtain at least 30 speakers per category (a total of 960 speakers; only 874 have be found yet). For each speaker, speech excerpts were extracted from audiovisual documents using an automatic pipeline consisting of speech detection, background music and overlapped speech removal and speaker diarization, used to present clean speaker segments to human annotators identifying target speakers. This pipeline proved highly effective, cutting down manual processing by a factor of ten. Evaluation of the quality of the automatic processing and of the final output is provided. It shows the automatic processing compare to up-to-date process, and that the output provides high quality speech for most of the selected excerpts. This method shows promise for creating large corpora of known target speakers.
Abstract:This paper proposes a direct text to speech translation system using discrete acoustic units. This framework employs text in different source languages as input to generate speech in the target language without the need for text transcriptions in this language. Motivated by the success of acoustic units in previous works for direct speech to speech translation systems, we use the same pipeline to extract the acoustic units using a speech encoder combined with a clustering algorithm. Once units are obtained, an encoder-decoder architecture is trained to predict them. Then a vocoder generates speech from units. Our approach for direct text to speech translation was tested on the new CVSS corpus with two different text mBART models employed as initialisation. The systems presented report competitive performance for most of the language pairs evaluated. Besides, results show a remarkable improvement when initialising our proposed architecture with a model pre-trained with more languages.
Abstract:Voice activity and overlapped speech detection (respectively VAD and OSD) are key pre-processing tasks for speaker diarization. The final segmentation performance highly relies on the robustness of these sub-tasks. Recent studies have shown VAD and OSD can be trained jointly using a multi-class classification model. However, these works are often restricted to a specific speech domain, lacking information about the generalization capacities of the systems. This paper proposes a complete and new benchmark of different VAD and OSD models, on multiple audio setups (single/multi-channel) and speech domains (e.g. media, meeting...). Our 2/3-class systems, which combine a Temporal Convolutional Network with speech representations adapted to the setup, outperform state-of-the-art results. We show that the joint training of these two tasks offers similar performances in terms of F1-score to two dedicated VAD and OSD systems while reducing the training cost. This unique architecture can also be used for single and multichannel speech processing.
Abstract:Research in multilingual speech-to-text translation is topical. Having a single model that supports multiple translation tasks is desirable. The goal of this work it to improve cross-lingual transfer learning in multilingual speech-to-text translation via semantic knowledge distillation. We show that by initializing the encoder of the encoder-decoder sequence-to-sequence translation model with SAMU-XLS-R, a multilingual speech transformer encoder trained using multi-modal (speech-text) semantic knowledge distillation, we achieve significantly better cross-lingual task knowledge transfer than the baseline XLS-R, a multilingual speech transformer encoder trained via self-supervised learning. We demonstrate the effectiveness of our approach on two popular datasets, namely, CoVoST-2 and Europarl. On the 21 translation tasks of the CoVoST-2 benchmark, we achieve an average improvement of 12.8 BLEU points over the baselines. In the zero-shot translation scenario, we achieve an average gain of 18.8 and 11.9 average BLEU points on unseen medium and low-resource languages. We make similar observations on Europarl speech translation benchmark.
Abstract:Pseudo-label (PL) filtering forms a crucial part of Self-Training (ST) methods for unsupervised domain adaptation. Dropout-based Uncertainty-driven Self-Training (DUST) proceeds by first training a teacher model on source domain labeled data. Then, the teacher model is used to provide PLs for the unlabeled target domain data. Finally, we train a student on augmented labeled and pseudo-labeled data. The process is iterative, where the student becomes the teacher for the next DUST iteration. A crucial step that precedes the student model training in each DUST iteration is filtering out noisy PLs that could lead the student model astray. In DUST, we proposed a simple, effective, and theoretically sound PL filtering strategy based on the teacher model's uncertainty about its predictions on unlabeled speech utterances. We estimate the model's uncertainty by computing disagreement amongst multiple samples drawn from the teacher model during inference by injecting noise via dropout. In this work, we show that DUST's PL filtering, as initially used, may fail under severe source and target domain mismatch. We suggest several approaches to eliminate or alleviate this issue. Further, we bring insights from the research in neural network model calibration to DUST and show that a well-calibrated model correlates strongly with a positive outcome of the DUST PL filtering step.
Abstract:This article focuses on overlapped speech and gender detection in order to study interactions between women and men in French audiovisual media (Gender Equality Monitoring project). In this application context, we need to automatically segment the speech signal according to speakers gender, and to identify when at least two speakers speak at the same time. We propose to use WavLM model which has the advantage of being pre-trained on a huge amount of speech data, to build an overlapped speech detection (OSD) and a gender detection (GD) systems. In this study, we use two different corpora. The DIHARD III corpus which is well adapted for the OSD task but lack gender information. The ALLIES corpus fits with the project application context. Our best OSD system is a Temporal Convolutional Network (TCN) with WavLM pre-trained features as input, which reaches a new state-of-the-art F1-score performance on DIHARD. A neural GD is trained with WavLM inputs on a gender balanced subset of the French broadcast news ALLIES data, and obtains an accuracy of 97.9%. This work opens new perspectives for human science researchers regarding the differences of representation between women and men in French media.
Abstract:We aim at improving spoken language modeling (LM) using very large amount of automatically transcribed speech. We leverage the INA (French National Audiovisual Institute) collection and obtain 19GB of text after applying ASR on 350,000 hours of diverse TV shows. From this, spoken language models are trained either by fine-tuning an existing LM (FlauBERT) or through training a LM from scratch. New models (FlauBERT-Oral) are shared with the community and evaluated for 3 downstream tasks: spoken language understanding, classification of TV shows and speech syntactic parsing. Results show that FlauBERT-Oral can be beneficial compared to its initial FlauBERT version demonstrating that, despite its inherent noisy nature, ASR-generated text can be used to build spoken language models.
Abstract:We propose the SAMU-XLSR: Semantically-Aligned Multimodal Utterance-level Cross-Lingual Speech Representation learning framework. Unlike previous works on speech representation learning, which learns multilingual contextual speech embedding at the resolution of an acoustic frame (10-20ms), this work focuses on learning multimodal (speech-text) multilingual speech embedding at the resolution of a sentence (5-10s) such that the embedding vector space is semantically aligned across different languages. We combine state-of-the-art multilingual acoustic frame-level speech representation learning model XLS-R with the Language Agnostic BERT Sentence Embedding (LaBSE) model to create an utterance-level multimodal multilingual speech encoder SAMU-XLSR. Although we train SAMU-XLSR with only multilingual transcribed speech data, cross-lingual speech-text and speech-speech associations emerge in its learned representation space. To substantiate our claims, we use SAMU-XLSR speech encoder in combination with a pre-trained LaBSE text sentence encoder for cross-lingual speech-to-text translation retrieval, and SAMU-XLSR alone for cross-lingual speech-to-speech translation retrieval. We highlight these applications by performing several cross-lingual text and speech translation retrieval tasks across several datasets.
Abstract:This paper describes the ON-TRAC Consortium translation systems developed for two challenge tracks featured in the Evaluation Campaign of IWSLT 2022: low-resource and dialect speech translation. For the Tunisian Arabic-English dataset (low-resource and dialect tracks), we build an end-to-end model as our joint primary submission, and compare it against cascaded models that leverage a large fine-tuned wav2vec 2.0 model for ASR. Our results show that in our settings pipeline approaches are still very competitive, and that with the use of transfer learning, they can outperform end-to-end models for speech translation (ST). For the Tamasheq-French dataset (low-resource track) our primary submission leverages intermediate representations from a wav2vec 2.0 model trained on 234 hours of Tamasheq audio, while our contrastive model uses a French phonetic transcription of the Tamasheq audio as input in a Conformer speech translation architecture jointly trained on automatic speech recognition, ST and machine translation losses. Our results highlight that self-supervised models trained on smaller sets of target data are more effective to low-resource end-to-end ST fine-tuning, compared to large off-the-shelf models. Results also illustrate that even approximate phonetic transcriptions can improve ST scores.