LAUM
Abstract:Speaker Diarization (SD) aims at grouping speech segments that belong to the same speaker. This task is required in many speech-processing applications, such as rich meeting transcription. In this context, distant microphone arrays usually capture the audio signal. Beamforming, i.e., spatial filtering, is a common practice to process multi-microphone audio data. However, it often requires an explicit localization of the active source to steer the filter. This paper proposes a self-attention-based algorithm to select the output of a bank of fixed spatial filters. This method serves as a feature extractor for joint Voice Activity (VAD) and Overlapped Speech Detection (OSD). The speaker diarization is then inferred from the detected segments. The approach shows convincing distant VAD, OSD, and SD performance, e.g. 14.5% DER on the AISHELL-4 dataset. The analysis of the self-attention weights demonstrates their explainability, as they correlate with the speaker's angular locations.
Abstract:Voice activity and overlapped speech detection (respectively VAD and OSD) are key pre-processing tasks for speaker diarization. The final segmentation performance highly relies on the robustness of these sub-tasks. Recent studies have shown VAD and OSD can be trained jointly using a multi-class classification model. However, these works are often restricted to a specific speech domain, lacking information about the generalization capacities of the systems. This paper proposes a complete and new benchmark of different VAD and OSD models, on multiple audio setups (single/multi-channel) and speech domains (e.g. media, meeting...). Our 2/3-class systems, which combine a Temporal Convolutional Network with speech representations adapted to the setup, outperform state-of-the-art results. We show that the joint training of these two tasks offers similar performances in terms of F1-score to two dedicated VAD and OSD systems while reducing the training cost. This unique architecture can also be used for single and multichannel speech processing.