Abstract:In this paper, we propose a new task -- generating speech from videos of people and their transcripts (VTTS) -- to motivate new techniques for multimodal speech generation. This task generalizes the task of generating speech from cropped lip videos, and is also more complicated than the task of generating generic audio clips (e.g., dog barking) from videos and text. Multilingual versions of the task could lead to new techniques for cross-lingual dubbing. We also present a decoder-only multimodal model for this task, which we call Visatronic. This model embeds vision, text and speech directly into the common subspace of a transformer model and uses an autoregressive loss to learn a generative model of discretized mel-spectrograms conditioned on speaker videos and transcripts of their speech. By embedding all modalities into a common subspace, Visatronic can achieve improved results over models that use only text or video as input. Further, it presents a much simpler approach for multimodal speech generation compared to prevailing approaches which rely on lip-detectors and complicated architectures to fuse modalities while producing better results. Since the model is flexible enough to accommodate different ways of ordering inputs as a sequence, we carefully explore different strategies to better understand the best way to propagate information to the generative steps. To facilitate further research on VTTS, we will release (i) our code, (ii) clean transcriptions for the large-scale VoxCeleb2 dataset, and (iii) a standardized evaluation protocol for VTTS incorporating both objective and subjective metrics.
Abstract:Open-Vocabulary Temporal Action Localization (OVTAL) enables a model to recognize any desired action category in videos without the need to explicitly curate training data for all categories. However, this flexibility poses significant challenges, as the model must recognize not only the action categories seen during training but also novel categories specified at inference. Unlike standard temporal action localization, where training and test categories are predetermined, OVTAL requires understanding contextual cues that reveal the semantics of novel categories. To address these challenges, we introduce OVFormer, a novel open-vocabulary framework extending ActionFormer with three key contributions. First, we employ task-specific prompts as input to a large language model to obtain rich class-specific descriptions for action categories. Second, we introduce a cross-attention mechanism to learn the alignment between class representations and frame-level video features, facilitating the multimodal guided features. Third, we propose a two-stage training strategy which includes training with a larger vocabulary dataset and finetuning to downstream data to generalize to novel categories. OVFormer extends existing TAL methods to open-vocabulary settings. Comprehensive evaluations on the THUMOS14 and ActivityNet-1.3 benchmarks demonstrate the effectiveness of our method. Code and pretrained models will be publicly released.
Abstract:Temporal Action Localization (TAL) involves localizing and classifying action snippets in an untrimmed video. The emergence of large video foundation models has led RGB-only video backbones to outperform previous methods needing both RGB and optical flow modalities. Leveraging these large models is often limited to training only the TAL head due to the prohibitively large GPU memory required to adapt the video backbone for TAL. To overcome this limitation, we introduce LoSA, the first memory-and-parameter-efficient backbone adapter designed specifically for TAL to handle untrimmed videos. LoSA specializes for TAL by introducing Long-Short-range Adapters that adapt the intermediate layers of the video backbone over different temporal ranges. These adapters run parallel to the video backbone to significantly reduce memory footprint. LoSA also includes Long-Short-range Fusion that strategically combines the output of these adapters from the video backbone layers to enhance the video features provided to the TAL head. Experiments show that LoSA significantly outperforms all existing methods on standard TAL benchmarks, THUMOS-14 and ActivityNet-v1.3, by scaling end-to-end backbone adaptation to billion-parameter-plus models like VideoMAEv2~(ViT-g) and leveraging them beyond head-only transfer learning.
Abstract:The commencement of the decade brought along with it a grave pandemic and in response the movement of education forums predominantly into the online world. With a surge in the usage of online video conferencing platforms and tools to better gauge student understanding, there needs to be a mechanism to assess whether instructors can grasp the extent to which students understand the subject and their response to the educational stimuli. The current systems consider only a single cue with a lack of focus in the educational domain. Thus, there is a necessity for the measurement of an all-encompassing holistic overview of the students' reaction to the subject matter. This paper highlights the need for a multimodal approach to affect recognition and its deployment in the online classroom while considering four cues, posture and gesture, facial, eye tracking and verbal recognition. It compares the various machine learning models available for each cue and provides the most suitable approach given the available dataset and parameters of classroom footage. A multimodal approach derived from weighted majority voting is proposed by combining the most fitting models from this analysis of individual cues based on accuracy, ease of procuring data corpus, sensitivity and any major drawbacks.
Abstract:Open-world object detection (OWOD) is a challenging computer vision problem, where the task is to detect a known set of object categories while simultaneously identifying unknown objects. Additionally, the model must incrementally learn new classes that become known in the next training episodes. Distinct from standard object detection, the OWOD setting poses significant challenges for generating quality candidate proposals on potentially unknown objects, separating the unknown objects from the background and detecting diverse unknown objects. Here, we introduce a novel end-to-end transformer-based framework, OW-DETR, for open-world object detection. The proposed OW-DETR comprises three dedicated components namely, attention-driven pseudo-labeling, novelty classification and objectness scoring to explicitly address the aforementioned OWOD challenges. Our OW-DETR explicitly encodes multi-scale contextual information, possesses less inductive bias, enables knowledge transfer from known classes to the unknown class and can better discriminate between unknown objects and background. Comprehensive experiments are performed on two benchmarks: MS-COCO and PASCAL VOC. The extensive ablations reveal the merits of our proposed contributions. Further, our model outperforms the recently introduced OWOD approach, ORE, with absolute gains ranging from 1.8% to 3.3% in terms of unknown recall on the MS-COCO benchmark. In the case of incremental object detection, OW-DETR outperforms the state-of-the-art for all settings on the PASCAL VOC benchmark. Our codes and models will be publicly released.
Abstract:Multi-label zero-shot learning (ZSL) is a more realistic counter-part of standard single-label ZSL since several objects can co-exist in a natural image. However, the occurrence of multiple objects complicates the reasoning and requires region-specific processing of visual features to preserve their contextual cues. We note that the best existing multi-label ZSL method takes a shared approach towards attending to region features with a common set of attention maps for all the classes. Such shared maps lead to diffused attention, which does not discriminatively focus on relevant locations when the number of classes are large. Moreover, mapping spatially-pooled visual features to the class semantics leads to inter-class feature entanglement, thus hampering the classification. Here, we propose an alternate approach towards region-based discriminability-preserving multi-label zero-shot classification. Our approach maintains the spatial resolution to preserve region-level characteristics and utilizes a bi-level attention module (BiAM) to enrich the features by incorporating both region and scene context information. The enriched region-level features are then mapped to the class semantics and only their class predictions are spatially pooled to obtain image-level predictions, thereby keeping the multi-class features disentangled. Our approach sets a new state of the art on two large-scale multi-label zero-shot benchmarks: NUS-WIDE and Open Images. On NUS-WIDE, our approach achieves an absolute gain of 6.9% mAP for ZSL, compared to the best published results.
Abstract:Multi-label zero-shot learning strives to classify images into multiple unseen categories for which no data is available during training. The test samples can additionally contain seen categories in the generalized variant. Existing approaches rely on learning either shared or label-specific attention from the seen classes. Nevertheless, computing reliable attention maps for unseen classes during inference in a multi-label setting is still a challenge. In contrast, state-of-the-art single-label generative adversarial network (GAN) based approaches learn to directly synthesize the class-specific visual features from the corresponding class attribute embeddings. However, synthesizing multi-label features from GANs is still unexplored in the context of zero-shot setting. In this work, we introduce different fusion approaches at the attribute-level, feature-level and cross-level (across attribute and feature-levels) for synthesizing multi-label features from their corresponding multi-label class embedding. To the best of our knowledge, our work is the first to tackle the problem of multi-label feature synthesis in the (generalized) zero-shot setting. Comprehensive experiments are performed on three zero-shot image classification benchmarks: NUS-WIDE, Open Images and MS COCO. Our cross-level fusion-based generative approach outperforms the state-of-the-art on all three datasets. Furthermore, we show the generalization capabilities of our fusion approach in the zero-shot detection task on MS COCO, achieving favorable performance against existing methods. The source code is available at https://github.com/akshitac8/Generative_MLZSL.
Abstract:Model-based reinforcement learning (RL) has emerged as a promising tool for developing controllers for real world systems (e.g., robotics, autonomous driving, etc.). However, real systems often have constraints imposed on their state space which must be satisfied to ensure the safety of the system and its environment. Developing a verification tool for RL algorithms is challenging because the non-linear structure of neural networks impedes analytical verification of such models or controllers. To this end, we present a novel safety verification framework for model-based RL controllers using reachable set analysis. The proposed frame-work can efficiently handle models and controllers which are represented using neural networks. Additionally, if a controller fails to satisfy the safety constraints in general, the proposed framework can also be used to identify the subset of initial states from which the controller can be safely executed.
Abstract:Several works have addressed the problem of incorporating constraints in the reinforcement learning (RL) framework, however majority of them can only guarantee the satisfaction of soft constraints. In this work, we address the problem of satisfying hard state constraints in a model-free RL setting with the deterministic system dynamics. The proposed algorithm is developed for the discrete state and action space and utilizes a multi-class support vector machine (SVM) to represent the policy. The state constraints are incorporated in the SVM optimization framework to derive an analytical solution for determining the policy parameters. This final policy converges to a solution which is guaranteed to satisfy the constraints. Additionally, the proposed formulation adheres to the Q-learning framework and thus, also guarantees convergence to the optimal solution. The algorithm is demonstrated with multiple example problems.
Abstract:Zero-shot learning strives to classify unseen categories for which no data is available during training. In the generalized variant, the test samples can further belong to seen or unseen categories. The state-of-the-art relies on Generative Adversarial Networks that synthesize unseen class features by leveraging class-specific semantic embeddings. During training, they generate semantically consistent features, but discard this constraint during feature synthesis and classification. We propose to enforce semantic consistency at all stages of (generalized) zero-shot learning: training, feature synthesis and classification. We further introduce a feedback loop, from a semantic embedding decoder, that iteratively refines the generated features during both the training and feature synthesis stages. The synthesized features together with their corresponding latent embeddings from the decoder are transformed into discriminative features and utilized during classification to reduce ambiguities among categories. Experiments on (generalized) zero-shot learning for object and action classification reveal the benefit of semantic consistency and iterative feedback for GAN-based networks, outperforming existing methods on six zero-shot learning benchmarks.