What is object detection? Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Papers and Code
Apr 30, 2025
Abstract:Audio deepfakes represent a growing threat to digital security and trust, leveraging advanced generative models to produce synthetic speech that closely mimics real human voices. Detecting such manipulations is especially challenging under open-world conditions, where spoofing methods encountered during testing may differ from those seen during training. In this work, we propose an end-to-end deep learning framework for audio deepfake detection that operates directly on raw waveforms. Our model, RawNetLite, is a lightweight convolutional-recurrent architecture designed to capture both spectral and temporal features without handcrafted preprocessing. To enhance robustness, we introduce a training strategy that combines data from multiple domains and adopts Focal Loss to emphasize difficult or ambiguous samples. We further demonstrate that incorporating codec-based manipulations and applying waveform-level audio augmentations (e.g., pitch shifting, noise, and time stretching) leads to significant generalization improvements under realistic acoustic conditions. The proposed model achieves over 99.7% F1 and 0.25% EER on in-domain data (FakeOrReal), and up to 83.4% F1 with 16.4% EER on a challenging out-of-distribution test set (AVSpoof2021 + CodecFake). These findings highlight the importance of diverse training data, tailored objective functions and audio augmentations in building resilient and generalizable audio forgery detectors. Code and pretrained models are available at https://iplab.dmi.unict.it/mfs/Deepfakes/PaperRawNet2025/.
Via

Apr 28, 2025
Abstract:This paper introduces a concept of neural network specialization via task-specific domain constraining, aimed at enhancing network performance on data subspace in which the network operates. The study presents experiments on training specialists for image classification and object detection tasks. The results demonstrate that specialization can enhance a generalist's accuracy even without additional data or changing training regimes: solely by constraining class label space in which the network performs. Theoretical and experimental analyses indicate that effective specialization requires modifying traditional fine-tuning methods and constraining data space to semantically coherent subsets. The specialist extraction phase before tuning the network is proposed for maximal performance gains. We also provide analysis of the evolution of the feature space during specialization. This study paves way to future research for developing more advanced dynamically configurable image analysis systems, where computations depend on the specific input. Additionally, the proposed methods can help improve system performance in scenarios where certain data domains should be excluded from consideration of the generalist network.
Via

Apr 28, 2025
Abstract:The Vision Transformer (ViT) has made significant advancements in computer vision, utilizing self-attention mechanisms to achieve state-of-the-art performance across various tasks, including image classification, object detection, and segmentation. Its architectural flexibility and capabilities have made it a preferred choice among researchers and practitioners. However, the intricate multi-head attention mechanism of ViT presents significant challenges to interpretability, as the underlying prediction process remains opaque. A critical limitation arises from an observation commonly noted in transformer architectures: "Not all attention heads are equally meaningful." Overlooking the relative importance of specific heads highlights the limitations of existing interpretability methods. To address these challenges, we introduce Gradient-Driven Multi-Head Attention Rollout (GMAR), a novel method that quantifies the importance of each attention head using gradient-based scores. These scores are normalized to derive a weighted aggregate attention score, effectively capturing the relative contributions of individual heads. GMAR clarifies the role of each head in the prediction process, enabling more precise interpretability at the head level. Experimental results demonstrate that GMAR consistently outperforms traditional attention rollout techniques. This work provides a practical contribution to transformer-based architectures, establishing a robust framework for enhancing the interpretability of Vision Transformer models.
Via

Apr 27, 2025
Abstract:Explainable Artificial Intelligence (XAI) techniques for interpreting object detection models remain in an early stage, with no established standards for systematic evaluation. This absence of consensus hinders both the comparative analysis of methods and the informed selection of suitable approaches. To address this gap, we introduce the Object Detection Explainable AI Evaluation (ODExAI), a comprehensive framework designed to assess XAI methods in object detection based on three core dimensions: localization accuracy, faithfulness to model behavior, and computational complexity. We benchmark a set of XAI methods across two widely used object detectors (YOLOX and Faster R-CNN) and standard datasets (MS-COCO and PASCAL VOC). Empirical results demonstrate that region-based methods (e.g., D-CLOSE) achieve strong localization (PG = 88.49%) and high model faithfulness (OA = 0.863), though with substantial computational overhead (Time = 71.42s). On the other hand, CAM-based methods (e.g., G-CAME) achieve superior localization (PG = 96.13%) and significantly lower runtime (Time = 0.54s), but at the expense of reduced faithfulness (OA = 0.549). These findings demonstrate critical trade-offs among existing XAI approaches and reinforce the need for task-specific evaluation when deploying them in object detection pipelines. Our implementation and evaluation benchmarks are publicly available at: https://github.com/Analytics-Everywhere-Lab/odexai.
Via

Apr 28, 2025
Abstract:In this work, we introduce Segmentation to Human-Object Interaction (\textit{\textbf{Seg2HOI}}) approach, a novel framework that integrates segmentation-based vision foundation models with the human-object interaction task, distinguished from traditional detection-based Human-Object Interaction (HOI) methods. Our approach enhances HOI detection by not only predicting the standard triplets but also introducing quadruplets, which extend HOI triplets by including segmentation masks for human-object pairs. More specifically, Seg2HOI inherits the properties of the vision foundation model (e.g., promptable and interactive mechanisms) and incorporates a decoder that applies these attributes to HOI task. Despite training only for HOI, without additional training mechanisms for these properties, the framework demonstrates that such features still operate efficiently. Extensive experiments on two public benchmark datasets demonstrate that Seg2HOI achieves performance comparable to state-of-the-art methods, even in zero-shot scenarios. Lastly, we propose that Seg2HOI can generate HOI quadruplets and interactive HOI segmentation from novel text and visual prompts that were not used during training, making it versatile for a wide range of applications by leveraging this flexibility.
Via

Apr 28, 2025
Abstract:Grasp detection methods typically target the detection of a set of free-floating hand poses that can grasp the object. However, not all of the detected grasp poses are executable due to physical constraints. Even though it is straightforward to filter invalid grasp poses in the post-process, such a two-staged approach is computationally inefficient, especially when the constraint is hard. In this work, we propose an approach to take the following two constraints into account during the grasp detection stage, namely, (i) the picked object must be able to be placed with a predefined configuration without in-hand manipulation (ii) it must be reachable by the robot under the joint limit and collision-avoidance constraints for both pick and place cases. Our key idea is to train an SE(3) grasp diffusion network to estimate the noise in the form of spatial velocity, and constrain the denoising process by a multi-target differential inverse kinematics with an inequality constraint, so that the states are guaranteed to be reachable and placement can be performed without collision. In addition to an improved success ratio, we experimentally confirmed that our approach is more efficient and consistent in computation time compared to a naive two-stage approach.
Via

Apr 29, 2025
Abstract:Embedded flight devices with visual capabilities have become essential for a wide range of applications. In aerial image detection, while many existing methods have partially addressed the issue of small target detection, challenges remain in optimizing small target detection and balancing detection accuracy with efficiency. These issues are key obstacles to the advancement of real-time aerial image detection. In this paper, we propose a new family of real-time detectors for aerial image detection, named FBRT-YOLO, to address the imbalance between detection accuracy and efficiency. Our method comprises two lightweight modules: Feature Complementary Mapping Module (FCM) and Multi-Kernel Perception Unit(MKP), designed to enhance object perception for small targets in aerial images. FCM focuses on alleviating the problem of information imbalance caused by the loss of small target information in deep networks. It aims to integrate spatial positional information of targets more deeply into the network,better aligning with semantic information in the deeper layers to improve the localization of small targets. We introduce MKP, which leverages convolutions with kernels of different sizes to enhance the relationships between targets of various scales and improve the perception of targets at different scales. Extensive experimental results on three major aerial image datasets, including Visdrone, UAVDT, and AI-TOD,demonstrate that FBRT-YOLO outperforms various real-time detectors in terms of performance and speed.
* AAAI 2025
Via

Apr 27, 2025
Abstract:Single-Domain Generalized Object Detection~(S-DGOD) aims to train an object detector on a single source domain while generalizing well to diverse unseen target domains, making it suitable for multimedia applications that involve various domain shifts, such as intelligent video surveillance and VR/AR technologies. With the success of large-scale Vision-Language Models, recent S-DGOD approaches exploit pre-trained vision-language knowledge to guide invariant feature learning across visual domains. However, the utilized knowledge remains at a coarse-grained level~(e.g., the textual description of adverse weather paired with the image) and serves as an implicit regularization for guidance, struggling to learn accurate region- and object-level features in varying domains. In this work, we propose a new cross-modal feature learning method, which can capture generalized and discriminative regional features for S-DGOD tasks. The core of our method is the mechanism of Cross-modal and Region-aware Feature Interaction, which simultaneously learns both inter-modal and intra-modal regional invariance through dynamic interactions between fine-grained textual and visual features. Moreover, we design a simple but effective strategy called Cross-domain Proposal Refining and Mixing, which aligns the position of region proposals across multiple domains and diversifies them, enhancing the localization ability of detectors in unseen scenarios. Our method achieves new state-of-the-art results on S-DGOD benchmark datasets, with improvements of +8.8\%~mPC on Cityscapes-C and +7.9\%~mPC on DWD over baselines, demonstrating its efficacy.
Via

Apr 27, 2025
Abstract:Detecting small drones, often indistinguishable from birds, is crucial for modern surveillance. This work introduces a drone detection methodology built upon the medium-sized YOLOv11 object detection model. To enhance its performance on small targets, we implemented a multi-scale approach in which the input image is processed both as a whole and in segmented parts, with subsequent prediction aggregation. We also utilized a copy-paste data augmentation technique to enrich the training dataset with diverse drone and bird examples. Finally, we implemented a post-processing technique that leverages frame-to-frame consistency to mitigate missed detections. The proposed approach attained a top-3 ranking in the 8th WOSDETC Drone-vsBird Detection Grand Challenge, held at the 2025 International Joint Conference on Neural Networks (IJCNN), showcasing its capability to detect drones in complex environments effectively.
* Accepted for presentation at the International Joint Conference on
Neural Networks (IJCNN) 2025
Via

Apr 27, 2025
Abstract:Traditional 3D modeling requires technical expertise, specialized software, and time-intensive processes, making it inaccessible for many users. Our research aims to lower these barriers by combining generative AI and augmented reality (AR) into a cohesive system that allows users to easily generate, manipulate, and interact with 3D models in real time, directly within AR environments. Utilizing cutting-edge AI models like Shap-E, we address the complex challenges of transforming 2D images into 3D representations in AR environments. Key challenges such as object isolation, handling intricate backgrounds, and achieving seamless user interaction are tackled through advanced object detection methods, such as Mask R-CNN. Evaluation results from 35 participants reveal an overall System Usability Scale (SUS) score of 69.64, with participants who engaged with AR/VR technologies more frequently rating the system significantly higher, at 80.71. This research is particularly relevant for applications in gaming, education, and AR-based e-commerce, offering intuitive, model creation for users without specialized skills.
Via
