Abstract:Ensuring robot safety in complex environments is a difficult task due to actuation limits, such as torque bounds. This paper presents a safety-critical control framework that leverages learning-based switching between multiple backup controllers to formally guarantee safety under bounded control inputs while satisfying driver intention. By leveraging backup controllers designed to uphold safety and input constraints, backup control barrier functions (BCBFs) construct implicitly defined control invariance sets via a feasible quadratic program (QP). However, BCBF performance largely depends on the design and conservativeness of the chosen backup controller, especially in our setting of human-driven vehicles in complex, e.g, off-road, conditions. While conservativeness can be reduced by using multiple backup controllers, determining when to switch is an open problem. Consequently, we develop a broadcast scheme that estimates driver intention and integrates BCBFs with multiple backup strategies for human-robot interaction. An LSTM classifier uses data inputs from the robot, human, and safety algorithms to continually choose a backup controller in real-time. We demonstrate our method's efficacy on a dual-track robot in obstacle avoidance scenarios. Our framework guarantees robot safety while adhering to driver intention.
Abstract:Future NASA lander missions to icy moons will require completely automated, accurate, and data efficient calibration methods for the robot manipulator arms that sample icy terrains in the lander's vicinity. To support this need, this paper presents a Gaussian Process (GP) approach to the classical manipulator kinematic calibration process. Instead of identifying a corrected set of Denavit-Hartenberg kinematic parameters, a set of GPs models the residual kinematic error of the arm over the workspace. More importantly, this modeling framework allows a Gaussian Process Upper Confident Bound (GP-UCB) algorithm to efficiently and adaptively select the calibration's measurement points so as to minimize the number of experiments, and therefore minimize the time needed for recalibration. The method is demonstrated in simulation on a simple 2-DOF arm, a 6 DOF arm whose geometry is a candidate for a future NASA mission, and a 7 DOF Barrett WAM arm.