What is Sentiment Analysis? Sentiment analysis is the process of determining the sentiment of a piece of text, such as a tweet or a review.
Papers and Code
Jan 31, 2025
Abstract:Sentiment analysis of patient feedback from the public health domain can aid decision makers in evaluating the provided services. The current paper focuses on free-text comments in patient surveys about general practitioners and psychiatric healthcare, annotated with four sentence-level polarity classes -- positive, negative, mixed and neutral -- while also attempting to alleviate data scarcity by leveraging general-domain sources in the form of reviews. For several different architectures, we compare in-domain and out-of-domain effects, as well as the effects of training joint multi-domain models.
* Accepted for NoDaLiDa / Baltic-HLT 2025
Via
Jan 31, 2025
Abstract:The Tsetlin Machine (TM) architecture has recently demonstrated effectiveness in Machine Learning (ML), particularly within Natural Language Processing (NLP). It has been utilized to construct word embedding using conjunctive propositional clauses, thereby significantly enhancing our understanding and interpretation of machine-derived decisions. The previous approach performed the word embedding over a sequence of input words to consolidate the information into a cohesive and unified representation. However, that approach encounters scalability challenges as the input size increases. In this study, we introduce a novel approach incorporating two-phase training to discover contextual embeddings of input sequences. Specifically, this method encapsulates the knowledge for each input word within the dataset's vocabulary, subsequently constructing embeddings for a sequence of input words utilizing the extracted knowledge. This technique not only facilitates the design of a scalable model but also preserves interpretability. Our experimental findings revealed that the proposed method yields competitive performance compared to the previous approaches, demonstrating promising results in contrast to human-generated benchmarks. Furthermore, we applied the proposed approach to sentiment analysis on the IMDB dataset, where the TM embedding and the TM classifier, along with other interpretable classifiers, offered a transparent end-to-end solution with competitive performance.
Via
Jan 29, 2025
Abstract:Accurate sentiment analysis of texts is crucial for a variety of applications, such as understanding customer feedback, monitoring market trends, and detecting public sentiment. However, manually annotating large sentiment corpora for supervised learning is labor-intensive and time-consuming. Therefore, it is essential and effective to develop a semi-supervised method for the sentiment analysis task. Although some methods have been proposed for semi-supervised text classification, they rely on the intrinsic information within the unlabeled data and the learning capability of the NLP model, which lack generalization ability to the sentiment analysis scenario and may prone to overfit. Inspired by the ability of pretrained Large Language Models (LLMs) in following instructions and generating coherent text, we propose a Semantic Consistency Regularization with Large Language Models (SCR) framework for semi-supervised sentiment analysis. We introduce two prompting strategies to semantically enhance unlabeled text using LLMs. The first is Entity-based Enhancement (SCR-EE), which involves extracting entities and numerical information, and querying the LLM to reconstruct the textual information. The second is Concept-based Enhancement (SCR-CE), which directly queries the LLM with the original sentence for semantic reconstruction. Subsequently, the LLM-augmented data is utilized for a consistency loss with confidence thresholding, which preserves high-quality agreement samples to provide additional supervision signals during training. Furthermore, to fully utilize the uncertain unlabeled data samples, we propose a class re-assembling strategy inspired by the class space shrinking theorem. Experiments show our method achieves remarkable performance over prior semi-supervised methods.
* ICONIP 2024
Via
Jan 29, 2025
Abstract:Construction robotics increasingly relies on natural language processing for task execution, creating a need for robust methods to interpret commands in complex, dynamic environments. While existing research primarily focuses on what tasks robots should perform, less attention has been paid to how these tasks should be executed safely and efficiently. This paper presents a novel probabilistic framework that uses sentiment analysis from natural language commands to dynamically adjust robot navigation policies in construction environments. The framework leverages Building Information Modeling (BIM) data and natural language prompts to create adaptive navigation strategies that account for varying levels of environmental risk and uncertainty. We introduce an object-aware path planning approach that combines exponential potential fields with a grid-based representation of the environment, where the potential fields are dynamically adjusted based on the semantic analysis of user prompts. The framework employs Bayesian inference to consolidate multiple information sources: the static data from BIM, the semantic content of natural language commands, and the implied safety constraints from user prompts. We demonstrate our approach through experiments comparing three scenarios: baseline shortest-path planning, safety-oriented navigation, and risk-aware routing. Results show that our method successfully adapts path planning based on natural language sentiment, achieving a 50\% improvement in minimum distance to obstacles when safety is prioritized, while maintaining reasonable path lengths. Scenarios with contrasting prompts, such as "dangerous" and "safe", demonstrate the framework's ability to modify paths. This approach provides a flexible foundation for integrating human knowledge and safety considerations into construction robot navigation.
* Submitted to International Symposium on Automation and Robotics in
Construction (ISARC)
Via
Jan 28, 2025
Abstract:Irony is a powerful figurative language (FL) on social media that can potentially mislead various NLP tasks, such as recommendation systems, misinformation checks, and sentiment analysis. Understanding the implicit meaning of this kind of subtle language is essential to mitigate irony's negative impact on NLP tasks. However, building models to understand irony presents a unique set of challenges, because irony is a complex form of language that often relies on context, tone, and subtle cues to convey meaning that is opposite or different from the literal interpretation. Large language models, such as ChatGPT, are increasingly able to capture implicit and contextual information. In this study, we investigate the generalization, reasoning and understanding ability of ChatGPT on irony detection across six different genre irony detection datasets. Our findings suggest that ChatGPT appears to show an enhanced language understanding and reasoning ability. But it needs to be very careful in prompt engineering design. Thus, we propose a prompt engineering design framework IDADP to achieve higher irony detection accuracy, improved understanding of irony, and more effective explanations compared to other state-of-the-art ChatGPT zero-shot approaches. And ascertain via experiments that the practice generated under the framework is likely to be the promised solution to resolve the generalization issues of LLMs.
Via
Jan 28, 2025
Abstract:Understanding emotional signals in older adults is crucial for designing virtual assistants that support their well-being. However, existing affective computing models often face significant limitations: (1) limited availability of datasets representing older adults, especially in non-English-speaking populations, and (2) poor generalization of models trained on younger or homogeneous demographics. To address these gaps, this study evaluates state-of-the-art affective computing models -- including facial expression recognition, text sentiment analysis, and smile detection -- using videos of older adults interacting with either a person or a virtual avatar. As part of this effort, we introduce a novel dataset featuring Spanish-speaking older adults engaged in human-to-human video interviews. Through three comprehensive analyses, we investigate (1) the alignment between human-annotated labels and automatic model outputs, (2) the relationships between model outputs across different modalities, and (3) individual variations in emotional signals. Using both the Wizard of Oz (WoZ) dataset and our newly collected dataset, we uncover limited agreement between human annotations and model predictions, weak consistency across modalities, and significant variability among individuals. These findings highlight the shortcomings of generalized emotion perception models and emphasize the need of incorporating personal variability and cultural nuances into future systems.
Via
Jan 27, 2025
Abstract:Aspect-based Sentiment Analysis (ABSA) is the task aimed at predicting the sentiment polarity of aspect words within sentences. Recently, incorporating graph neural networks (GNNs) to capture additional syntactic structure information in the dependency tree derived from syntactic dependency parsing has been proven to be an effective paradigm for boosting ABSA. Despite GNNs enhancing model capability by fusing more types of information, most works only utilize a single topology view of the dependency tree or simply conflate different perspectives of information without distinction, which limits the model performance. To address these challenges, in this paper, we propose a new multi-view attention syntactic enhanced graph convolutional network (MASGCN) that weighs different syntactic information of views using attention mechanisms. Specifically, we first construct distance mask matrices from the dependency tree to obtain multiple subgraph views for GNNs. To aggregate features from different views, we propose a multi-view attention mechanism to calculate the attention weights of views. Furthermore, to incorporate more syntactic information, we fuse the dependency type information matrix into the adjacency matrices and present a structural entropy loss to learn the dependency type adjacency matrix. Comprehensive experiments on four benchmark datasets demonstrate that our model outperforms state-of-the-art methods. The codes and datasets are available at https://github.com/SELGroup/MASGCN.
* This paper is accepted by DASFAA 2025
Via
Jan 27, 2025
Abstract:Aspect-based sentiment analysis (ABSA) aims to identify four sentiment elements, including aspect term, aspect category, opinion term, and sentiment polarity. These elements construct the complete picture of sentiments. The most challenging task, aspect sentiment quad prediction (ASQP), predicts these elements simultaneously, hindered by difficulties in accurately coupling different sentiment elements. A key challenge is insufficient annotated data that limits the capability of models in semantic understanding and reasoning about quad prediction. To address this, we propose stepwise task augmentation and relation learning (STAR), a strategy inspired by human reasoning. STAR constructs auxiliary data to learn quadruple relationships incrementally by augmenting with pairwise and overall relation tasks derived from training data. By encouraging the model to infer causal relationships among sentiment elements without requiring additional annotations, STAR effectively enhances quad prediction. Extensive experiments demonstrate the proposed STAR exhibits superior performance on four benchmark datasets.
* 8 pages, 2 figures, and 4 tables
Via
Jan 26, 2025
Abstract:In the study of neural network interpretability, there is growing evidence to suggest that relevant features are encoded across many neurons in a distributed fashion. Making sense of these distributed representations without knowledge of the network's encoding strategy is a combinatorial task that is not guaranteed to be tractable. This work explores one feasible path to both detecting and tracing the joint influence of neurons in a distributed representation. We term this approach Activation Spectroscopy (ActSpec), owing to its analysis of the pseudo-Boolean Fourier spectrum defined over the activation patterns of a network layer. The sub-network defined between a given layer and an output logit is cast as a special class of pseudo-Boolean function. The contributions of each subset of neurons in the specified layer can be quantified through the function's Fourier coefficients. We propose a combinatorial optimization procedure to search for Fourier coefficients that are simultaneously high-valued, and non-redundant. This procedure can be viewed as an extension of the Goldreich-Levin algorithm which incorporates additional problem-specific constraints. The resulting coefficients specify a collection of subsets, which are used to test the degree to which a representation is distributed. We verify our approach in a number of synthetic settings and compare against existing interpretability benchmarks. We conclude with a number of experimental evaluations on an MNIST classifier, and a transformer-based network for sentiment analysis.
Via
Jan 24, 2025
Abstract:Idiom detection using Natural Language Processing (NLP) is the computerized process of recognizing figurative expressions within a text that convey meanings beyond the literal interpretation of the words. While idiom detection has seen significant progress across various languages, the Kurdish language faces a considerable research gap in this area despite the importance of idioms in tasks like machine translation and sentiment analysis. This study addresses idiom detection in Sorani Kurdish by approaching it as a text classification task using deep learning techniques. To tackle this, we developed a dataset containing 10,580 sentences embedding 101 Sorani Kurdish idioms across diverse contexts. Using this dataset, we developed and evaluated three deep learning models: KuBERT-based transformer sequence classification, a Recurrent Convolutional Neural Network (RCNN), and a BiLSTM model with an attention mechanism. The evaluations revealed that the transformer model, the fine-tuned BERT, consistently outperformed the others, achieving nearly 99% accuracy while the RCNN achieved 96.5% and the BiLSTM 80%. These results highlight the effectiveness of Transformer-based architectures in low-resource languages like Kurdish. This research provides a dataset, three optimized models, and insights into idiom detection, laying a foundation for advancing Kurdish NLP.
* 22 pages, 8 figures, 7 tables
Via