What is Sentiment Analysis? Sentiment analysis is the process of determining the sentiment of a piece of text, such as a tweet or a review.
Papers and Code
Nov 15, 2024
Abstract:In machine learning (ML), the inference phase is the process of applying pre-trained models to new, unseen data with the objective of making predictions. During the inference phase, end-users interact with ML services to gain insights, recommendations, or actions based on the input data. For this reason, serving strategies are nowadays crucial for deploying and managing models in production environments effectively. These strategies ensure that models are available, scalable, reliable, and performant for real-world applications, such as time series forecasting, image classification, natural language processing, and so on. In this paper, we evaluate the performances of five widely-used model serving frameworks (TensorFlow Serving, TorchServe, MLServer, MLflow, and BentoML) under four different scenarios (malware detection, cryptocoin prices forecasting, image classification, and sentiment analysis). We demonstrate that TensorFlow Serving is able to outperform all the other frameworks in serving deep learning (DL) models. Moreover, we show that DL-specific frameworks (TensorFlow Serving and TorchServe) display significantly lower latencies than the three general-purpose ML frameworks (BentoML, MLFlow, and MLServer).
* 2024 IEEE International Conference on Cloud Engineering (IC2E)
Via
Nov 14, 2024
Abstract:This paper builds upon an existing speech emotion recognition model by adding an additional LSTM layer to improve the accuracy and processing efficiency of emotion recognition from audio data. By capturing the long-term dependencies within audio sequences through a dual-layer LSTM network, the model can recognize and classify complex emotional patterns more accurately. Experiments conducted on the RAVDESS dataset validated this approach, showing that the modified dual layer LSTM model improves accuracy by 2% compared to the single-layer LSTM while significantly reducing recognition latency, thereby enhancing real-time performance. These results indicate that the dual-layer LSTM architecture is highly suitable for handling emotional features with long-term dependencies, providing a viable optimization for speech emotion recognition systems. This research provides a reference for practical applications in fields like intelligent customer service, sentiment analysis and human-computer interaction.
Via
Nov 13, 2024
Abstract:This article applies natural language processing (NLP) to extract and quantify textual information to predict stock performance. Using an extensive dataset of Chinese analyst reports and employing a customized BERT deep learning model for Chinese text, this study categorizes the sentiment of the reports as positive, neutral, or negative. The findings underscore the predictive capacity of this sentiment indicator for stock volatility, excess returns, and trading volume. Specifically, analyst reports with strong positive sentiment will increase excess return and intraday volatility, and vice versa, reports with strong negative sentiment also increase volatility and trading volume, but decrease future excess return. The magnitude of this effect is greater for positive sentiment reports than for negative sentiment reports. This article contributes to the empirical literature on sentiment analysis and the response of the stock market to news in the Chinese stock market.
Via
Nov 15, 2024
Abstract:Evaluating the importance of different layers in large language models (LLMs) is crucial for optimizing model performance and interpretability. This paper first explores layer importance using the Activation Variance-Sparsity Score (AVSS), which combines normalized activation variance and sparsity to quantify each layer's contribution to overall model performance. By ranking layers based on AVSS and pruning the least impactful 25\%, our experiments on tasks such as question answering, language modeling, and sentiment classification show that over 90\% of the original performance is retained, highlighting potential redundancies in LLM architectures. Building on AVSS, we propose an enhanced version tailored to assess hallucination propensity across layers (EAVSS). This improved approach introduces Hallucination-Specific Activation Variance (HSAV) and Hallucination-Specific Sparsity (HSS) metrics, allowing precise identification of hallucination-prone layers. By incorporating contrastive learning on these layers, we effectively mitigate hallucination generation, contributing to more robust and efficient LLMs(The maximum performance improvement is 12\%). Our results on the NQ, SciQ, TriviaQA, TruthfulQA, and WikiQA datasets demonstrate the efficacy of this method, offering a comprehensive framework for both layer importance evaluation and hallucination mitigation in LLMs.
* 20 pages, 5 figures
Via
Nov 12, 2024
Abstract:Adversarial examples, which are inputs deliberately perturbed with imperceptible changes to induce model errors, have raised serious concerns for the reliability and security of deep neural networks (DNNs). While adversarial attacks have been extensively studied in continuous data domains such as images, the discrete nature of text presents unique challenges. In this paper, we propose Irony-based Adversarial Examples (IAE), a method that transforms straightforward sentences into ironic ones to create adversarial text. This approach exploits the rhetorical device of irony, where the intended meaning is opposite to the literal interpretation, requiring a deeper understanding of context to detect. The IAE method is particularly challenging due to the need to accurately locate evaluation words, substitute them with appropriate collocations, and expand the text with suitable ironic elements while maintaining semantic coherence. Our research makes the following key contributions: (1) We introduce IAE, a strategy for generating textual adversarial examples using irony. This method does not rely on pre-existing irony corpora, making it a versatile tool for creating adversarial text in various NLP tasks. (2) We demonstrate that the performance of several state-of-the-art deep learning models on sentiment analysis tasks significantly deteriorates when subjected to IAE attacks. This finding underscores the susceptibility of current NLP systems to adversarial manipulation through irony. (3) We compare the impact of IAE on human judgment versus NLP systems, revealing that humans are less susceptible to the effects of irony in text.
* IEEE Access, vol. 12, pp. 105605-105612, 2024
Via
Nov 14, 2024
Abstract:Moral sentiments expressed in natural language significantly influence both online and offline environments, shaping behavioral styles and interaction patterns, including social media selfpresentation, cyberbullying, adherence to social norms, and ethical decision-making. To effectively measure moral sentiments in natural language processing texts, it is crucial to utilize large, annotated datasets that provide nuanced understanding for accurate analysis and modeltraining. However, existing corpora, while valuable, often face linguistic limitations. To address this gap in the Chinese language domain,we introduce the Moral Foundation Weibo Corpus. This corpus consists of 25,671 Chinese comments on Weibo, encompassing six diverse topic areas. Each comment is manually annotated by at least three systematically trained annotators based on ten moral categories derived from a grounded theory of morality. To assess annotator reliability, we present the kappa testresults, a gold standard for measuring consistency. Additionally, we apply several the latest large language models to supplement the manual annotations, conducting analytical experiments to compare their performance and report baseline results for moral sentiment classification.
Via
Nov 12, 2024
Abstract:This study introduces a novel approach for EUR/USD exchange rate forecasting that integrates deep learning, textual analysis, and particle swarm optimization (PSO). By incorporating online news and analysis texts as qualitative data, the proposed PSO-LSTM model demonstrates superior performance compared to traditional econometric and machine learning models. The research employs advanced text mining techniques, including sentiment analysis using the RoBERTa-Large model and topic modeling with LDA. Empirical findings underscore the significant advantage of incorporating textual data, with the PSO-LSTM model outperforming benchmark models such as SVM, SVR, ARIMA, and GARCH. Ablation experiments reveal the contribution of each textual data category to the overall forecasting performance. The study highlights the transformative potential of artificial intelligence in finance and paves the way for future research in real-time forecasting and the integration of alternative data sources.
Via
Nov 11, 2024
Abstract:Multi-source unsupervised domain adaptation aims to leverage labeled data from multiple source domains for training a machine learning model to generalize well on a target domain without labels. Source domain selection plays a crucial role in determining the model's performance. It relies on the similarities amongst source and target domains. Nonetheless, existing work for source domain selection often involves heavyweight computational procedures, especially when dealing with numerous source domains and the need to identify the best ones from them. In this paper, we introduce a framework for gradual fine tuning (GFT) of machine learning models on multiple source domains. We represent multiple source domains as an undirected weighted graph. We then give a new generalization error bound for GFT along any path within the graph, which is used to determine the optimal path corresponding to the optimal training order. With this formulation, we introduce three lightweight graph-routing strategies which tend to minimize the error bound. Our best strategy improves $2.3\%$ of accuracy over the state-of-the-art on Natural Language Inference (NLI) task and achieves competitive performance on Sentiment Analysis (SA) task, especially a $3.9\%$ improvement on a more diverse subset of data we use for SA.
* In Proceedings of the 3rd Conference on Lifelong Learning Agents
(CoLLAs 2024)
Via
Nov 11, 2024
Abstract:Monitoring public sentiment via social media is potentially helpful during health crises such as the COVID-19 pandemic. However, traditional frequency-based, data-driven neural network-based approaches can miss newly relevant content due to the evolving nature of language in a dynamically evolving environment. Human-curated symbolic knowledge sources, such as lexicons for standard language and slang terms, can potentially elevate social media signals in evolving language. We introduce a neurosymbolic method that integrates neural networks with symbolic knowledge sources, enhancing the detection and interpretation of mental health-related tweets relevant to COVID-19. Our method was evaluated using a corpus of large datasets (approximately 12 billion tweets, 2.5 million subreddit data, and 700k news articles) and multiple knowledge graphs. This method dynamically adapts to evolving language, outperforming purely data-driven models with an F1 score exceeding 92\%. This approach also showed faster adaptation to new data and lower computational demands than fine-tuning pre-trained large language models (LLMs). This study demonstrates the benefit of neurosymbolic methods in interpreting text in a dynamic environment for tasks such as health surveillance.
* 13 Pages, 5 Figures, 5 Tables, 2024 IEEE International Conference on
Big Data, Regular Paper
Via
Nov 08, 2024
Abstract:Translation of code-mixed texts to formal English allow a wider audience to understand these code-mixed languages, and facilitate downstream analysis applications such as sentiment analysis. In this work, we look at translating Singlish, which is colloquial Singaporean English, to formal standard English. Singlish is formed through the code-mixing of multiple Asian languages and dialects. We analysed the presence of other Asian languages and variants which can facilitate translation. Our dataset is short message texts, written as informal communication between Singlish speakers. We use a multi-step prompting scheme on five Large Language Models (LLMs) for language detection and translation. Our analysis show that LLMs do not perform well in this task, and we describe the challenges involved in translation of code-mixed languages. We also release our dataset in this link https://github.com/luoqichan/singlish.
Via