What is Sentiment Analysis? Sentiment analysis is the process of determining the sentiment of a piece of text, such as a tweet or a review.
Papers and Code
May 28, 2025
Abstract:In this paper, we address the task of targeted sentiment analysis (TSA), which involves two sub-tasks, i.e., identifying specific aspects from reviews and determining their corresponding sentiments. Aspect extraction forms the foundation for sentiment prediction, highlighting the critical dependency between these two tasks for effective cross-task knowledge transfer. While most existing studies adopt a multi-task learning paradigm to align task-specific features in the latent space, they predominantly rely on coarse-grained knowledge transfer. Such approaches lack fine-grained control over aspect-sentiment relationships, often assuming uniform sentiment polarity within related aspects. This oversimplification neglects contextual cues that differentiate sentiments, leading to negative transfer. To overcome these limitations, we propose FCKT, a fine-grained cross-task knowledge transfer framework tailored for TSA. By explicitly incorporating aspect-level information into sentiment prediction, FCKT achieves fine-grained knowledge transfer, effectively mitigating negative transfer and enhancing task performance. Experiments on three datasets, including comparisons with various baselines and large language models (LLMs), demonstrate the effectiveness of FCKT. The source code is available on https://github.com/cwei01/FCKT.
* 11 pages, 6 figures
Via

May 28, 2025
Abstract:Mental disorders including depression, anxiety, and other neurological disorders pose a significant global challenge, particularly among individuals exhibiting social avoidance tendencies. This study proposes a hybrid approach by leveraging smartphone sensor data measuring daily physical activities and analyzing their social media (Twitter) interactions for evaluating an individual's depression level. Using CNN-based deep learning models and Naive Bayes classification, we identify human physical activities accurately and also classify the user sentiments. A total of 33 participants were recruited for data acquisition, and nine relevant features were extracted from the physical activities and analyzed with their weekly depression scores, evaluated using the Geriatric Depression Scale (GDS) questionnaire. Of the nine features, six are derived from physical activities, achieving an activity recognition accuracy of 95%, while three features stem from sentiment analysis of Twitter activities, yielding a sentiment analysis accuracy of 95.6%. Notably, several physical activity features exhibited significant correlations with the severity of depression symptoms. For classifying the depression severity, a support vector machine (SVM)-based algorithm is employed that demonstrated a very high accuracy of 94%, outperforming alternative models, e.g., the multilayer perceptron (MLP) and k-nearest neighbor. It is a simple approach yet highly effective in the long run for monitoring depression without breaching personal privacy.
Via

May 28, 2025
Abstract:Traditional sentiment analysis relies on surface-level linguistic patterns and retrospective data, limiting its ability to capture the psychological and contextual drivers of human sentiment. These limitations constrain its effectiveness in applications that require predictive insight, such as policy testing, narrative framing, and behavioral forecasting. We present a robust framework for sentiment simulation using generative AI agents embedded with psychologically rich profiles. Agents are instantiated from a nationally representative survey of 2,485 Filipino respondents, combining sociodemographic information with validated constructs of personality traits, values, beliefs, and socio-political attitudes. The framework includes three stages: (1) agent embodiment via categorical or contextualized encodings, (2) exposure to real-world political and economic scenarios, and (3) generation of sentiment ratings accompanied by explanatory rationales. Using Quadratic Weighted Accuracy (QWA), we evaluated alignment between agent-generated and human responses. Contextualized encoding achieved 92% alignment in replicating original survey responses. In sentiment simulation tasks, agents reached 81%--86% accuracy against ground truth sentiment, with contextualized profile encodings significantly outperforming categorical (p < 0.0001, Cohen's d = 0.70). Simulation results remained consistent across repeated trials (+/-0.2--0.5% SD) and resilient to variation in scenario framing (p = 0.9676, Cohen's d = 0.02). Our findings establish a scalable framework for sentiment modeling through psychographically grounded AI agents. This work signals a paradigm shift in sentiment analysis from retrospective classification to prospective and dynamic simulation grounded in psychology of sentiment formation.
* 18 pages, 10 figures
Via

May 28, 2025
Abstract:Emotion understanding includes basic tasks (e.g., sentiment/emotion classification) and advanced tasks (e.g., sarcasm/humor detection). Current methods rely on fixed-length CoT reasoning, failing to adapt to the varying complexity of emotions. We propose a task-adaptive reasoning framework that employs DeepSeek-R1 to generate variable-length reasoning chains for different emotion tasks. By combining fine-tuning with reinforcement learning, we design a composite reward function that balances four objectives: prediction accuracy, adaptive reasoning depth control, structural diversity in reasoning paths, and suppression of repetitive logic. This approach achieves dynamic context-sensitive inference while enabling LLMs to autonomously develop deep reasoning capabilities. Experimental results demonstrate consistent improvements in both Acc and F1 scores across four tasks: emotion, sentiment, humor, and sarcasm. Notably, peak enhancements reached 3.56% F1 (2.76% Acc) for basic tasks and 37.95% F1 (23.14% Acc) for advanced tasks. Our work bridges rigid CoT reasoning and emotional complexity through adaptive-depth analysis.
Via

May 25, 2025
Abstract:Aspect-Based Sentiment Analysis (ABSA) is a fundamental task in natural language processing, offering fine-grained insights into opinions expressed in text. While existing research has largely focused on resource-rich languages like English which leveraging large annotated datasets, pre-trained models, and language-specific tools. These resources are often unavailable for low-resource languages such as Bengali. The ABSA task in Bengali remains poorly explored and is further complicated by its unique linguistic characteristics and a lack of annotated data, pre-trained models, and optimized hyperparameters. To address these challenges, this research propose CrosGrpsABS, a novel hybrid framework that leverages bidirectional cross-attention between syntactic and semantic graphs to enhance aspect-level sentiment classification. The CrosGrpsABS combines transformerbased contextual embeddings with graph convolutional networks, built upon rule-based syntactic dependency parsing and semantic similarity computations. By employing bidirectional crossattention, the model effectively fuses local syntactic structure with global semantic context, resulting in improved sentiment classification performance across both low- and high-resource settings. We evaluate CrosGrpsABS on four low-resource Bengali ABSA datasets and the high-resource English SemEval 2014 Task 4 dataset. The CrosGrpsABS consistently outperforms existing approaches, achieving notable improvements, including a 0.93% F1-score increase for the Restaurant domain and a 1.06% gain for the Laptop domain in the SemEval 2014 Task 4 benchmark.
Via

May 26, 2025
Abstract:Political biases encoded by LLMs might have detrimental effects on downstream applications. Existing bias analysis methods rely on small-size intermediate tasks (questionnaire answering or political content generation) and rely on the LLMs themselves for analysis, thus propagating bias. We propose a new approach leveraging the observation that LLM sentiment predictions vary with the target entity in the same sentence. We define an entropy-based inconsistency metric to encode this prediction variability. We insert 1319 demographically and politically diverse politician names in 450 political sentences and predict target-oriented sentiment using seven models in six widely spoken languages. We observe inconsistencies in all tested combinations and aggregate them in a statistically robust analysis at different granularity levels. We observe positive and negative bias toward left and far-right politicians and positive correlations between politicians with similar alignment. Bias intensity is higher for Western languages than for others. Larger models exhibit stronger and more consistent biases and reduce discrepancies between similar languages. We partially mitigate LLM unreliability in target-oriented sentiment classification (TSC) by replacing politician names with fictional but plausible counterparts.
* To be published in the Proceedings of the 63rd Annual Meeting of the
Association for Computational Linguistics (ACL 2025)
Via

May 27, 2025
Abstract:In this paper, we present a comprehensive and systematic analysis of vision-language models (VLMs) for disparate meme classification tasks. We introduced a novel approach that generates a VLM-based understanding of meme images and fine-tunes the LLMs on textual understanding of the embedded meme text for improving the performance. Our contributions are threefold: (1) Benchmarking VLMs with diverse prompting strategies purposely to each sub-task; (2) Evaluating LoRA fine-tuning across all VLM components to assess performance gains; and (3) Proposing a novel approach where detailed meme interpretations generated by VLMs are used to train smaller language models (LLMs), significantly improving classification. The strategy of combining VLMs with LLMs improved the baseline performance by 8.34%, 3.52% and 26.24% for sarcasm, offensive and sentiment classification, respectively. Our results reveal the strengths and limitations of VLMs and present a novel strategy for meme understanding.
* 16 pages
Via

May 24, 2025
Abstract:Bangla or Bengali is the national language of Bangladesh, people from different regions don't talk in proper Bangla. Every division of Bangladesh has its own local language like Sylheti, Chittagong etc. In recent years some papers were published on Bangla language like sentiment analysis, fake news detection and classifications, but a few of them were on Bangla languages. This research is for the local language and this particular paper is on Sylheti language. It presented a comprehensive system using Natural Language Processing or NLP techniques for translating Pure or Modern Bangla to locally spoken Sylheti Bangla language. Total 1200 data used for training 3 models LSTM, Bi-LSTM and Seq2Seq and LSTM scored the best in performance with 89.3% accuracy. The findings of this research may contribute to the growth of Bangla NLP researchers for future more advanced innovations.
* 2024 15th Int. Conf. on Computing Communication and Networking
Technologies (ICCCNT), Kamand, India, pp. 1-7, 2024
* 2024 15th International Conference on Computing Communication and
Networking Technologies (ICCCNT)
Via

May 26, 2025
Abstract:Classifying customer feedback into distinct emotion categories is essential for understanding sentiment and improving customer experience. In this paper, we classify customer feedback in Spanish into three emotion categories--positive, neutral, and negative--using advanced NLP and ML techniques. Traditional methods translate feedback from widely spoken languages to less common ones, resulting in a loss of semantic integrity and contextual nuances inherent to the original language. To address this limitation, we propose a hybrid approach that combines TF-IDF with BERT embeddings, effectively transforming Spanish text into rich numerical representations that preserve the semantic depth of the original language by using a Custom Stacking Ensemble (CSE) approach. To evaluate emotion classification, we utilize a range of models, including Logistic Regression, KNN, Bagging classifier with LGBM, and AdaBoost. The CSE model combines these classifiers as base models and uses a one-vs-all Logistic Regression as the meta-model. Our experimental results demonstrate that CSE significantly outperforms the individual and BERT model, achieving a test accuracy of 93.3% on the native Spanish dataset--higher than the accuracy obtained from the translated version. These findings underscore the challenges of emotion classification in Spanish and highlight the advantages of combining vectorization techniques like TF-IDF with BERT for improved accuracy. Our results provide valuable insights for businesses seeking to leverage emotion classification to enhance customer feedback analysis and service improvements.
* This paper has been accepted and presented at the 4th International
Conference on Applied Intelligence and Informatics (AII 2024). The final
version will appear in the official conference proceedings. This preprint is
provided to ensure the timely dissemination of the research prior to formal
publication
Via

May 23, 2025
Abstract:As Large Language Models (LLMs) are increasingly being adopted for narrow tasks - such as medical question answering or sentiment analysis - and deployed in resource-constrained settings, a key question arises: how many parameters does a task actually need? In this work, we present LLM-Sieve, the first comprehensive framework for task-specific pruning of LLMs that achieves 20-75% parameter reduction with only 1-5% accuracy degradation across diverse domains. Unlike prior methods that apply uniform pruning or rely on low-rank approximations of weight matrices or inputs in isolation, LLM-Sieve (i) learns task-aware joint projections to better approximate output behavior, and (ii) employs a Genetic Algorithm to discover differentiated pruning levels for each matrix. LLM-Sieve is fully compatible with LoRA fine-tuning and quantization, and uniquely demonstrates strong generalization across datasets within the same task domain. Together, these results establish a practical and robust mechanism to generate smaller performant task-specific models.
Via
