What is Sentiment Analysis? Sentiment analysis is the process of determining the sentiment of a piece of text, such as a tweet or a review.
Papers and Code
Dec 17, 2024
Abstract:Aspect-based sentiment analysis (ABSA), a sequence labeling task, has attracted increasing attention in multilingual contexts. While previous research has focused largely on fine-tuning or training models specifically for ABSA, we evaluate large language models (LLMs) under zero-shot conditions to explore their potential to tackle this challenge with minimal task-specific adaptation. We conduct a comprehensive empirical evaluation of a series of LLMs on multilingual ABSA tasks, investigating various prompting strategies, including vanilla zero-shot, chain-of-thought (CoT), self-improvement, self-debate, and self-consistency, across nine different models. Results indicate that while LLMs show promise in handling multilingual ABSA, they generally fall short of fine-tuned, task-specific models. Notably, simpler zero-shot prompts often outperform more complex strategies, especially in high-resource languages like English. These findings underscore the need for further refinement of LLM-based approaches to effectively address ABSA task across diverse languages.
Via
Dec 17, 2024
Abstract:This work presents the BanglishRev Dataset, the largest e-commerce product review dataset to date for reviews written in Bengali, English, a mixture of both and Banglish, Bengali words written with English alphabets. The dataset comprises of 1.74 million written reviews from 3.2 million ratings information collected from a total of 128k products being sold in online e-commerce platforms targeting the Bengali population. It includes an extensive array of related metadata for each of the reviews including the rating given by the reviewer, date the review was posted and date of purchase, number of likes, dislikes, response from the seller, images associated with the review etc. With sentiment analysis being the most prominent usage of review datasets, experimentation with a binary sentiment analysis model with the review rating serving as an indicator of positive or negative sentiment was conducted to evaluate the effectiveness of the large amount of data presented in BanglishRev for sentiment analysis tasks. A BanglishBERT model is trained on the data from BanglishRev with reviews being considered labeled positive if the rating is greater than 3 and negative if the rating is less than or equal to 3. The model is evaluated by being testing against a previously published manually annotated dataset for e-commerce reviews written in a mixture of Bangla, English and Banglish. The experimental model achieved an exceptional accuracy of 94\% and F1 score of 0.94, demonstrating the dataset's efficacy for sentiment analysis. Some of the intriguing patterns and observations seen within the dataset and future research directions where the dataset can be utilized is also discussed and explored. The dataset can be accessed through https://huggingface.co/datasets/BanglishRev/bangla-english-and-code-mixed-ecommerce-review-dataset.
Via
Dec 16, 2024
Abstract:Multimodal Sentiment Analysis (MSA) leverages heterogeneous modalities, such as language, vision, and audio, to enhance the understanding of human sentiment. While existing models often focus on extracting shared information across modalities or directly fusing heterogeneous modalities, such approaches can introduce redundancy and conflicts due to equal treatment of all modalities and the mutual transfer of information between modality pairs. To address these issues, we propose a Disentangled-Language-Focused (DLF) multimodal representation learning framework, which incorporates a feature disentanglement module to separate modality-shared and modality-specific information. To further reduce redundancy and enhance language-targeted features, four geometric measures are introduced to refine the disentanglement process. A Language-Focused Attractor (LFA) is further developed to strengthen language representation by leveraging complementary modality-specific information through a language-guided cross-attention mechanism. The framework also employs hierarchical predictions to improve overall accuracy. Extensive experiments on two popular MSA datasets, CMU-MOSI and CMU-MOSEI, demonstrate the significant performance gains achieved by the proposed DLF framework. Comprehensive ablation studies further validate the effectiveness of the feature disentanglement module, language-focused attractor, and hierarchical predictions. Our code is available at https://github.com/pwang322/DLF.
* AAAI 2025 accepted
Via
Dec 16, 2024
Abstract:Finetuned large language models (LLMs) have shown remarkable performance in financial tasks, such as sentiment analysis and information retrieval. Due to privacy concerns, finetuning and deploying Financial LLMs (FinLLMs) locally are crucial for institutions. However, finetuning FinLLMs poses challenges including GPU memory constraints and long input sequences. In this paper, we employ quantized low-rank adaptation (QLoRA) to finetune FinLLMs, which leverage low-rank matrix decomposition and quantization techniques to significantly reduce computational requirements while maintaining high model performance. We also employ data and pipeline parallelism to enable local finetuning using cost-effective, widely accessible GPUs. Experiments on financial datasets demonstrate that our method achieves substantial improvements in accuracy, GPU memory usage, and time efficiency, underscoring the potential of lowrank methods for scalable and resource-efficient LLM finetuning.
Via
Dec 13, 2024
Abstract:The Efficient Market Hypothesis (EMH) highlights the essence of financial news in stock price movement. Financial news comes in the form of corporate announcements, news titles, and other forms of digital text. The generation of insights from financial news can be done with sentiment analysis. General-purpose language models are too general for sentiment analysis in finance. Curated labeled data for fine-tuning general-purpose language models are scare, and existing fine-tuned models for sentiment analysis in finance do not capture the maximum context width. We hypothesize that using actual and synthetic data can improve performance. We introduce BertNSP-finance to concatenate shorter financial sentences into longer financial sentences, and finbert-lc to determine sentiment from digital text. The results show improved performance on the accuracy and the f1 score for the financial phrasebank data with $50\%$ and $100\%$ agreement levels.
Via
Dec 13, 2024
Abstract:Despite multimodal sentiment analysis being a fertile research ground that merits further investigation, current approaches take up high annotation cost and suffer from label ambiguity, non-amicable to high-quality labeled data acquisition. Furthermore, choosing the right interactions is essential because the significance of intra- or inter-modal interactions can differ among various samples. To this end, we propose Semi-IIN, a Semi-supervised Intra-inter modal Interaction learning Network for multimodal sentiment analysis. Semi-IIN integrates masked attention and gating mechanisms, enabling effective dynamic selection after independently capturing intra- and inter-modal interactive information. Combined with the self-training approach, Semi-IIN fully utilizes the knowledge learned from unlabeled data. Experimental results on two public datasets, MOSI and MOSEI, demonstrate the effectiveness of Semi-IIN, establishing a new state-of-the-art on several metrics. Code is available at https://github.com/flow-ljh/Semi-IIN.
Via
Dec 13, 2024
Abstract:This document presents an in-depth examination of stock market sentiment through the integration of Convolutional Neural Networks (CNN) and Gated Recurrent Units (GRU), enabling precise risk alerts. The robust feature extraction capability of CNN is utilized to preprocess and analyze extensive network text data, identifying local features and patterns. The extracted feature sequences are then input into the GRU model to understand the progression of emotional states over time and their potential impact on future market sentiment and risk. This approach addresses the order dependence and long-term dependencies inherent in time series data, resulting in a detailed analysis of stock market sentiment and effective early warnings of future risks.
Via
Dec 13, 2024
Abstract:Accurately predicting sports viewership is crucial for optimizing ad sales and revenue forecasting. Social media platforms, such as Reddit, provide a wealth of user-generated content that reflects audience engagement and interest. In this study, we propose a regression-based approach to predict sports viewership using social media metrics, including post counts, comments, scores, and sentiment analysis from TextBlob and VADER. Through iterative improvements, such as focusing on major sports subreddits, incorporating categorical features, and handling outliers by sport, the model achieved an $R^2$ of 0.99, a Mean Absolute Error (MAE) of 1.27 million viewers, and a Root Mean Squared Error (RMSE) of 2.33 million viewers on the full dataset. These results demonstrate the model's ability to accurately capture patterns in audience behavior, offering significant potential for pre-event revenue forecasting and targeted advertising strategies.
* 17 pages, 4 figures, 2 tables
Via
Dec 12, 2024
Abstract:Despite the abundance of current researches working on the sentiment analysis from videos and audios, finding the best model that gives the highest accuracy rate is still considered a challenge for researchers in this field. The main objective of this paper is to prove the usability of emotion recognition models that take video and audio inputs. The datasets used to train the models are the CREMA-D dataset for audio and the RAVDESS dataset for video. The fine-tuned models that been used are: Facebook/wav2vec2-large for audio and the Google/vivit-b-16x2-kinetics400 for video. The avarage of the probabilities for each emotion generated by the two previous models is utilized in the decision making framework. After disparity in the results, if one of the models gets much higher accuracy, another test framework is created. The methods used are the Weighted Average method, the Confidence Level Threshold method, the Dynamic Weighting Based on Confidence method, and the Rule-Based Logic method. This limited approach gives encouraging results that make future research into these methods viable.
* Procedia Computer Science, Volume 251, 2024, Pages 41-48, ISSN
1877-0509
* Presented as a full paper in the 15th International Conference on
Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2024) October
28-30, 2024, Leuven, Belgium
Via
Dec 12, 2024
Abstract:Implicit sentiment analysis (ISA) presents significant challenges due to the absence of salient cue words. Previous methods have struggled with insufficient data and limited reasoning capabilities to infer underlying opinions. Integrating multi-task learning (MTL) with large language models (LLMs) offers the potential to enable models of varying sizes to reliably perceive and recognize genuine opinions in ISA. However, existing MTL approaches are constrained by two sources of uncertainty: data-level uncertainty, arising from hallucination problems in LLM-generated contextual information, and task-level uncertainty, stemming from the varying capacities of models to process contextual information. To handle these uncertainties, we introduce MT-ISA, a novel MTL framework that enhances ISA by leveraging the generation and reasoning capabilities of LLMs through automatic MTL. Specifically, MT-ISA constructs auxiliary tasks using generative LLMs to supplement sentiment elements and incorporates automatic MTL to fully exploit auxiliary data. We introduce data-level and task-level automatic weight learning (AWL), which dynamically identifies relationships and prioritizes more reliable data and critical tasks, enabling models of varying sizes to adaptively learn fine-grained weights based on their reasoning capabilities. We investigate three strategies for data-level AWL, while also introducing homoscedastic uncertainty for task-level AWL. Extensive experiments reveal that models of varying sizes achieve an optimal balance between primary prediction and auxiliary tasks in MT-ISA. This underscores the effectiveness and adaptability of our approach.
* 11 pages, 6 figures, and 6 tables
Via