Abstract:Radiology Report Generation (RRG) aims to produce accurate and coherent diagnostics from medical images. Although large vision language models (LVLM) improve report fluency and accuracy, they exhibit hallucinations, generating plausible yet image-ungrounded pathological details. Existing methods primarily rely on external knowledge guidance to facilitate the alignment between generated text and visual information. However, these approaches often ignore the inherent decoding priors and vision-language alignment biases in pretrained models and lack robustness due to reliance on constructed guidance. In this paper, we propose Layer-wise Expert-aligned Decoding (LEAD), a novel method to inherently modify the LVLM decoding trajectory. A multiple experts module is designed for extracting distinct pathological features which are integrated into each decoder layer via a gating mechanism. This layer-wise architecture enables the LLM to consult expert features at every inference step via a learned gating function, thereby dynamically rectifying decoding biases and steering the generation toward factual consistency. Experiments conducted on multiple public datasets demonstrate that the LEAD method yields effective improvements in clinical accuracy metrics and mitigates hallucinations while preserving high generation quality.
Abstract:Multimodal aspect-based sentiment analysis (MABSA) aims to identify aspect-level sentiments by jointly modeling textual and visual information, which is essential for fine-grained opinion understanding in social media. Existing approaches mainly rely on discriminative classification with complex multimodal fusion, yet lacking explicit sentiment explainability. In this paper, we reformulate MABSA as a generative and explainable task, proposing a unified framework that simultaneously predicts aspect-level sentiment and generates natural language explanations. Based on multimodal large language models (MLLMs), our approach employs a prompt-based generative paradigm, jointly producing sentiment and explanation. To further enhance aspect-oriented reasoning capabilities, we propose a dependency-syntax-guided sentiment cue strategy. This strategy prunes and textualizes the aspect-centered dependency syntax tree, guiding the model to distinguish different sentiment aspects and enhancing its explainability. To enable explainability, we use MLLMs to construct new datasets with sentiment explanations to fine-tune. Experiments show that our approach not only achieves consistent gains in sentiment classification accuracy, but also produces faithful, aspect-grounded explanations.
Abstract:In the digital era, effective identification and analysis of verbal attacks are essential for maintaining online civility and ensuring social security. However, existing research is limited by insufficient modeling of conversational structure and contextual dependency, particularly in Chinese social media where implicit attacks are prevalent. Current attack detection studies often emphasize general semantic understanding while overlooking user response relationships, hindering the identification of implicit and context-dependent attacks. To address these challenges, we present the novel "Hierarchical Attack Comment Detection" dataset and propose a divide-and-conquer, fine-grained framework for verbal attack recognition based on spatiotemporal information. The proposed dataset explicitly encodes hierarchical reply structures and chronological order, capturing complex interaction patterns in multi-turn discussions. Building on this dataset, the framework decomposes attack detection into hierarchical subtasks, where specialized lightweight models handle explicit detection, implicit intent inference, and target identification under constrained context. Extensive experiments on the proposed dataset and benchmark intention detection datasets show that smaller models using our framework significantly outperform larger monolithic models relying on parameter scaling, demonstrating the effectiveness of structured task decomposition.
Abstract:With the advancement of large language models (LLMs), diverse time series analysis tasks are reformulated as time series question answering (TSQA) through a unified natural language interface. However, existing LLM-based approaches largely adopt general natural language processing techniques and are prone to reasoning errors when handling complex numerical sequences. Different from purely textual tasks, time series data are inherently verifiable, enabling consistency checking between reasoning steps and the original input. Motivated by this property, we propose T3LLM, which performs multi-step reasoning with an explicit correction mechanism for time series question answering. The T3LLM framework consists of three LLMs, namely, a worker, a reviewer, and a student, that are responsible for generation, review, and reasoning learning, respectively. Within this framework, the worker generates step-wise chains of thought (CoT) under structured prompts, while the reviewer inspects the reasoning, identifies erroneous steps, and provides corrective comments. The collaboratively generated corrected CoT are used to fine-tune the student model, internalizing multi-step reasoning and self-correction into its parameters. Experiments on multiple real-world TSQA benchmarks demonstrate that T3LLM achieves state-of-the-art performance over strong LLM-based baselines.
Abstract:Mixture-of-experts (MoE) architectures used in large language models (LLMs) achieve state-of-the-art performance across diverse tasks yet face practical challenges such as deployment complexity and low activation efficiency. Expert pruning has thus emerged as a promising solution to reduce computational overhead and simplify the deployment of MoE models. However, existing expert pruning approaches conventionally rely on local importance metrics and often apply uniform layer-wise pruning, leveraging only partial evaluation signals and overlooking the heterogeneous contributions of experts across layers. To address these limitations, we propose an expert pruning approach based on the trajectory of activated experts across layers, which treats MoE as a weighted computation graph and casts expert selection as a global optimal path planning problem. Within this framework, we integrate complementary importance signals from reconstruction error, routing probabilities, and activation strength at the trajectory level, which naturally yields non-uniform expert retention across layers. Experiments show that our approach achieves superior pruning performance on nearly all tasks compared with most existing approaches.




Abstract:Pruning provides a practical solution to reduce the resources required to run large language models (LLMs) to benefit from their effective capabilities as well as control their cost for training and inference. Research on LLM pruning often ranks the importance of LLM parameters using their magnitudes and calibration-data activations and removes (or masks) the less important ones, accordingly reducing LLMs' size. However, these approaches primarily focus on preserving the LLM's ability to generate fluent sentences, while neglecting performance on specific domains and tasks. In this paper, we propose a simple yet effective pruning approach for LLMs that preserves task-specific capabilities while shrinking their parameter space. We first analyze how conventional pruning minimizes loss perturbation under general-domain calibration and extend this formulation by incorporating task-specific feature distributions into the importance computation of existing pruning algorithms. Thus, our framework computes separate importance scores using both general and task-specific calibration data, partitions parameters into shared and exclusive groups based on activation-norm differences, and then fuses their scores to guide the pruning process. This design enables our method to integrate seamlessly with various foundation pruning techniques and preserve the LLM's specialized abilities under compression. Experiments on widely used benchmarks demonstrate that our approach is effective and consistently outperforms the baselines with identical pruning ratios and different settings.
Abstract:Generating reports for computed tomography (CT) images is a challenging task, while similar to existing studies for medical image report generation, yet has its unique characteristics, such as spatial encoding of multiple images, alignment between image volume and texts, etc. Existing solutions typically use general 2D or 3D image processing techniques to extract features from a CT volume, where they firstly compress the volume and then divide the compressed CT slices into patches for visual encoding. These approaches do not explicitly account for the transformations among CT slices, nor do they effectively integrate multi-level image features, particularly those containing specific organ lesions, to instruct CT report generation (CTRG). In considering the strong correlation among consecutive slices in CT scans, in this paper, we propose a large language model (LLM) based CTRG method with recurrent visual feature extraction and stereo attentions for hierarchical feature modeling. Specifically, we use a vision Transformer to recurrently process each slice in a CT volume, and employ a set of attentions over the encoded slices from different perspectives to selectively obtain important visual information and align them with textual features, so as to better instruct an LLM for CTRG. Experiment results and further analysis on the benchmark M3D-Cap dataset show that our method outperforms strong baseline models and achieves state-of-the-art results, demonstrating its validity and effectiveness.




Abstract:Aspect-based sentiment analysis (ABSA) generally requires a deep understanding of the contextual information, including the words associated with the aspect terms and their syntactic dependencies. Most existing studies employ advanced encoders (e.g., pre-trained models) to capture such context, especially large language models (LLMs). However, training these encoders is resource-intensive, and in many cases, the available data is insufficient for necessary fine-tuning. Therefore it is challenging for learning LLMs within such restricted environments and computation efficiency requirement. As a result, it motivates the exploration of plug-and-play methods that adapt LLMs to ABSA with minimal effort. In this paper, we propose an approach that integrates extendable components capable of incorporating various types of syntactic knowledge, such as constituent syntax, word dependencies, and combinatory categorial grammar (CCG). Specifically, we propose a memory module that records syntactic information and is incorporated into LLMs to instruct the prediction of sentiment polarities. Importantly, this encoder acts as a versatile, detachable plugin that is trained independently of the LLM. We conduct experiments on benchmark datasets, which show that our approach outperforms strong baselines and previous approaches, thus demonstrates its effectiveness.




Abstract:Multi-modal affective computing aims to automatically recognize and interpret human attitudes from diverse data sources such as images and text, thereby enhancing human-computer interaction and emotion understanding. Existing approaches typically rely on unimodal analysis or straightforward fusion of cross-modal information that fail to capture complex and conflicting evidence presented across different modalities. In this paper, we propose a novel LLM-based approach for affective computing that explicitly deconstructs visual and textual representations into shared (modality-invariant) and modality-specific components. Specifically, our approach firstly encodes and aligns input modalities using pre-trained multi-modal encoders, then employs a representation decomposition framework to separate common emotional content from unique cues, and finally integrates these decomposed signals via an attention mechanism to form a dynamic soft prompt for a multi-modal LLM. Extensive experiments on three representative tasks for affective computing, namely, multi-modal aspect-based sentiment analysis, multi-modal emotion analysis, and hateful meme detection, demonstrate the effectiveness of our approach, which consistently outperforms strong baselines and state-of-the-art models.
Abstract:Genome modeling conventionally treats gene sequence as a language, reflecting its structured motifs and long-range dependencies analogous to linguistic units and organization principles such as words and syntax. Recent studies utilize advanced neural networks, ranging from convolutional and recurrent models to Transformer-based models, to capture contextual information of gene sequence, with the primary goal of obtaining effective gene sequence representations and thus enhance the models' understanding of various running gene samples. However, these approaches often directly apply language modeling techniques to gene sequences and do not fully consider the intrinsic information organization in them, where they do not consider how units at different granularities contribute to representation. In this paper, we propose DNAZEN, an enhanced genomic representation framework designed to learn from various granularities in gene sequences, including small polymers and G-grams that are combinations of several contiguous polymers. Specifically, we extract the G-grams from large-scale genomic corpora through an unsupervised approach to construct the G-gram vocabulary, which is used to provide G-grams in the learning process of DNA sequences through dynamically matching from running gene samples. A Transformer-based G-gram encoder is also proposed and the matched G-grams are fed into it to compute their representations and integrated into the encoder for basic unit (E4BU), which is responsible for encoding small units and maintaining the learning and inference process. To further enhance the learning process, we propose whole G-gram masking to train DNAZEN, where the model largely favors the selection of each entire G-gram to mask rather than an ordinary masking mechanism performed on basic units. Experiments on benchmark datasets demonstrate the effectiveness of DNAZEN on various downstream tasks.