Abstract:With the open-sourcing of text-to-image models (T2I) such as stable diffusion (SD) and stable diffusion XL (SD-XL), there is an influx of models fine-tuned in specific domains based on the open-source SD model, such as in anime, character portraits, etc. However, there are few specialized models in certain domains, such as interior design, which is attributed to the complex textual descriptions and detailed visual elements inherent in design, alongside the necessity for adaptable resolution. Therefore, text-to-image models for interior design are required to have outstanding prompt-following capabilities, as well as iterative collaboration with design professionals to achieve the desired outcome. In this paper, we collect and optimize text-image data in the design field and continue training in both English and Chinese on the basis of the open-source CLIP model. We also proposed a fine-tuning strategy with curriculum learning and reinforcement learning from CLIP feedback to enhance the prompt-following capabilities of our approach so as to improve the quality of image generation. The experimental results on the collected dataset demonstrate the effectiveness of the proposed approach, which achieves impressive results and outperforms strong baselines.
Abstract:Having the difficulty of solving the semantic gap between images and texts for the image captioning task, conventional studies in this area paid some attention to treating semantic concepts as a bridge between the two modalities and improved captioning performance accordingly. Although promising results on concept prediction were obtained, the aforementioned studies normally ignore the relationship among concepts, which relies on not only objects in the image, but also word dependencies in the text, so that offers a considerable potential for improving the process of generating good descriptions. In this paper, we propose a structured concept predictor (SCP) to predict concepts and their structures, then we integrate them into captioning, so as to enhance the contribution of visual signals in this task via concepts and further use their relations to distinguish cross-modal semantics for better description generation. Particularly, we design weighted graph convolutional networks (W-GCN) to depict concept relations driven by word dependencies, and then learns differentiated contributions from these concepts for following decoding process. Therefore, our approach captures potential relations among concepts and discriminatively learns different concepts, so that effectively facilitates image captioning with inherited information across modalities. Extensive experiments and their results demonstrate the effectiveness of our approach as well as each proposed module in this work.
Abstract:Recently, the increasing demand for superior medical services has highlighted the discrepancies in the medical infrastructure. With big data, especially texts, forming the foundation of medical services, there is an exigent need for effective natural language processing (NLP) solutions tailored to the healthcare domain. Conventional approaches leveraging pre-trained models present promising results in this domain and current large language models (LLMs) offer advanced foundation for medical text processing. However, most medical LLMs are trained only with supervised fine-tuning (SFT), even though it efficiently empowers LLMs to understand and respond to medical instructions but is ineffective in learning domain knowledge and aligning with human preference. Another engineering barrier that prevents current medical LLM from better text processing ability is their restricted context length (e.g., 2,048 tokens), making it hard for the LLMs to process long context, which is frequently required in the medical domain. In this work, we propose ChiMed-GPT, a new benchmark LLM designed explicitly for Chinese medical domain, with enlarged context length to 4,096 tokens and undergoes a comprehensive training regime with pre-training, SFT, and RLHF. Evaluations on real-world tasks including information extraction, question answering, and dialogue generation demonstrate ChiMed-GPT's superior performance over general domain LLMs. Furthermore, we analyze possible biases through prompting ChiMed-GPT to perform attitude scales regarding discrimination of patients, so as to contribute to further responsible development of LLMs in the medical domain. The code and model are released at https://github.com/synlp/ChiMed-GPT.
Abstract:Radiology report generation (RRG) aims to automatically generate free-text descriptions from clinical radiographs, e.g., chest X-Ray images. RRG plays an essential role in promoting clinical automation and presents significant help to provide practical assistance for inexperienced doctors and alleviate radiologists' workloads. Therefore, consider these meaningful potentials, research on RRG is experiencing explosive growth in the past half-decade, especially with the rapid development of deep learning approaches. Existing studies perform RRG from the perspective of enhancing different modalities, provide insights on optimizing the report generation process with elaborated features from both visual and textual information, and further facilitate RRG with the cross-modal interactions among them. In this paper, we present a comprehensive review of deep learning-based RRG from various perspectives. Specifically, we firstly cover pivotal RRG approaches based on the task-specific features of radiographs, reports, and the cross-modal relations between them, and then illustrate the benchmark datasets conventionally used for this task with evaluation metrics, subsequently analyze the performance of different approaches and finally offer our summary on the challenges and the trends in future directions. Overall, the goal of this paper is to serve as a tool for understanding existing literature and inspiring potential valuable research in the field of RRG.
Abstract:Named entity recognition (NER) is highly sensitive to sentential syntactic and semantic properties where entities may be extracted according to how they are used and placed in the running text. To model such properties, one could rely on existing resources to providing helpful knowledge to the NER task; some existing studies proved the effectiveness of doing so, and yet are limited in appropriately leveraging the knowledge such as distinguishing the important ones for particular context. In this paper, we improve NER by leveraging different types of syntactic information through attentive ensemble, which functionalizes by the proposed key-value memory networks, syntax attention, and the gate mechanism for encoding, weighting and aggregating such syntactic information, respectively. Experimental results on six English and Chinese benchmark datasets suggest the effectiveness of the proposed model and show that it outperforms previous studies on all experiment datasets.
Abstract:Existing approaches for named entity recognition suffer from data sparsity problems when conducted on short and informal texts, especially user-generated social media content. Semantic augmentation is a potential way to alleviate this problem. Given that rich semantic information is implicitly preserved in pre-trained word embeddings, they are potential ideal resources for semantic augmentation. In this paper, we propose a neural-based approach to NER for social media texts where both local (from running text) and augmented semantics are taken into account. In particular, we obtain the augmented semantic information from a large-scale corpus, and propose an attentive semantic augmentation module and a gate module to encode and aggregate such information, respectively. Extensive experiments are performed on three benchmark datasets collected from English and Chinese social media platforms, where the results demonstrate the superiority of our approach to previous studies across all three datasets.
Abstract:Constituency parsing is a fundamental and important task for natural language understanding, where a good representation of contextual information can help this task. N-grams, which is a conventional type of feature for contextual information, have been demonstrated to be useful in many tasks, and thus could also be beneficial for constituency parsing if they are appropriately modeled. In this paper, we propose span attention for neural chart-based constituency parsing to leverage n-gram information. Considering that current chart-based parsers with Transformer-based encoder represent spans by subtraction of the hidden states at the span boundaries, which may cause information loss especially for long spans, we incorporate n-grams into span representations by weighting them according to their contributions to the parsing process. Moreover, we propose categorical span attention to further enhance the model by weighting n-grams within different length categories, and thus benefit long-sentence parsing. Experimental results on three widely used benchmark datasets demonstrate the effectiveness of our approach in parsing Arabic, Chinese, and English, where state-of-the-art performance is obtained by our approach on all of them.
Abstract:Supertagging is conventionally regarded as an important task for combinatory categorial grammar (CCG) parsing, where effective modeling of contextual information is highly important to this task. However, existing studies have made limited efforts to leverage contextual features except for applying powerful encoders (e.g., bi-LSTM). In this paper, we propose attentive graph convolutional networks to enhance neural CCG supertagging through a novel solution of leveraging contextual information. Specifically, we build the graph from chunks (n-grams) extracted from a lexicon and apply attention over the graph, so that different word pairs from the contexts within and across chunks are weighted in the model and facilitate the supertagging accordingly. The experiments performed on the CCGbank demonstrate that our approach outperforms all previous studies in terms of both supertagging and parsing. Further analyses illustrate the effectiveness of each component in our approach to discriminatively learn from word pairs to enhance CCG supertagging.