Hierarchical Reinforcement Learning


Hierarchical reinforcement learning is a framework that decomposes complex tasks into a hierarchy of subtasks for more efficient learning.

PegasusFlow: Parallel Rolling-Denoising Score Sampling for Robot Diffusion Planner Flow Matching

Add code
Sep 10, 2025
Viaarxiv icon

A Comprehensive Review of Reinforcement Learning for Autonomous Driving in the CARLA Simulator

Add code
Sep 10, 2025
Viaarxiv icon

Language-Driven Hierarchical Task Structures as Explicit World Models for Multi-Agent Learning

Add code
Sep 05, 2025
Viaarxiv icon

Emergent Hierarchical Reasoning in LLMs through Reinforcement Learning

Add code
Sep 03, 2025
Viaarxiv icon

Impedance Primitive-augmented Hierarchical Reinforcement Learning for Sequential Tasks

Add code
Aug 27, 2025
Viaarxiv icon

Multi-layer Abstraction for Nested Generation of Options (MANGO) in Hierarchical Reinforcement Learning

Add code
Aug 25, 2025
Viaarxiv icon

HITTER: A HumanoId Table TEnnis Robot via Hierarchical Planning and Learning

Add code
Aug 28, 2025
Viaarxiv icon

HieroAction: Hierarchically Guided VLM for Fine-Grained Action Analysis

Add code
Aug 23, 2025
Viaarxiv icon

HERAKLES: Hierarchical Skill Compilation for Open-ended LLM Agents

Add code
Aug 20, 2025
Viaarxiv icon

Cognitive Structure Generation: From Educational Priors to Policy Optimization

Add code
Aug 18, 2025
Viaarxiv icon