Hierarchical Reinforcement Learning


Hierarchical reinforcement learning is a framework that decomposes complex tasks into a hierarchy of subtasks for more efficient learning.

Emergent temporal abstractions in autoregressive models enable hierarchical reinforcement learning

Add code
Dec 24, 2025
Viaarxiv icon

Embodied AI-Enhanced IoMT Edge Computing: UAV Trajectory Optimization and Task Offloading with Mobility Prediction

Add code
Dec 24, 2025
Viaarxiv icon

LLM-CAS: Dynamic Neuron Perturbation for Real-Time Hallucination Correction

Add code
Dec 21, 2025
Viaarxiv icon

WorldRFT: Latent World Model Planning with Reinforcement Fine-Tuning for Autonomous Driving

Add code
Dec 22, 2025
Viaarxiv icon

QoS-Aware Hierarchical Reinforcement Learning for Joint Link Selection and Trajectory Optimization in SAGIN-Supported UAV Mobility Management

Add code
Dec 17, 2025
Viaarxiv icon

Learning to Plan, Planning to Learn: Adaptive Hierarchical RL-MPC for Sample-Efficient Decision Making

Add code
Dec 18, 2025
Viaarxiv icon

Sample-Efficient Robot Skill Learning for Construction Tasks: Benchmarking Hierarchical Reinforcement Learning and Vision-Language-Action VLA Model

Add code
Dec 16, 2025
Viaarxiv icon

Hybrid Cognitive IoT with Cooperative Caching and SWIPT-EH: A Hierarchical Reinforcement Learning Framework

Add code
Dec 16, 2025
Viaarxiv icon

CoDA: A Context-Decoupled Hierarchical Agent with Reinforcement Learning

Add code
Dec 14, 2025
Viaarxiv icon

Goal Reaching with Eikonal-Constrained Hierarchical Quasimetric Reinforcement Learning

Add code
Dec 12, 2025
Viaarxiv icon