This paper describes VILLAIN, a multimodal fact-checking system that verifies image-text claims through prompt-based multi-agent collaboration. For the AVerImaTeC shared task, VILLAIN employs vision-language model agents across multiple stages of fact-checking. Textual and visual evidence is retrieved from the knowledge store enriched through additional web collection. To identify key information and address inconsistencies among evidence items, modality-specific and cross-modal agents generate analysis reports. In the subsequent stage, question-answer pairs are produced based on these reports. Finally, the Verdict Prediction agent produces the verification outcome based on the image-text claim and the generated question-answer pairs. Our system ranked first on the leaderboard across all evaluation metrics. The source code is publicly available at https://github.com/ssu-humane/VILLAIN.
Graph Foundation Models (GFMs) have achieved remarkable success in generalizing across diverse domains. However, they mainly focus on Text-Attributed Graphs (TAGs), leaving Multimodal-Attributed Graphs (MAGs) largely untapped. Developing Multimodal Graph Foundation Models (MGFMs) allows for leveraging the rich multimodal information in MAGs, and extends applicability to broader types of downstream tasks. While recent MGFMs integrate diverse modality information, our empirical investigation reveals two fundamental limitations of existing MGFMs: (1)they fail to explicitly model modality interaction, essential for capturing intricate cross-modal semantics beyond simple aggregation, and (2)they exhibit sub-optimal modality alignment, which is critical for bridging the significant semantic disparity between distinct modal spaces. To address these challenges, we propose PLANET (graPh topoLogy-aware modAlity iNteraction and alignmEnT), a novel framework employing a Divide-and-Conquer strategy to decouple modality interaction and alignment across distinct granularities. At the embedding granularity, (1)Embedding-wise Domain Gating (EDG) performs local semantic enrichment by adaptively infusing topology-aware cross-modal context, achieving modality interaction. At the node granularity, (2)Node-wise Discretization Retrieval (NDR) ensures global modality alignment by constructing a Discretized Semantic Representation Space (DSRS) to bridge modality gaps. Extensive experiments demonstrate that PLANET significantly outperforms state-of-the-art baselines across diverse graph-centric and multimodal generative tasks.
Composed Image Retrieval (CIR) aims to retrieve target images based on a hybrid query comprising a reference image and a modification text. Early dual-tower Vision-Language Models (VLMs) struggle with cross-modality compositional reasoning required for this task. Recently, adapting generative Multimodal Large Language Models (MLLMs) for retrieval offers a promising direction. However, we identify that this adaptation strategy overlooks a fundamental issue: adapting a generative MLLM into a single-embedding discriminative retriever triggers a paradigm conflict, which leads to Capability Degradation - the deterioration of native fine-grained reasoning after retrieval adaptation. To address this challenge, we propose ReCALL (Recalibrating Capability Degradation), a model-agnostic framework that follows a diagnose-generate-refine pipeline: Firstly, we diagnose cognitive blind spots of the retriever via self-guided informative instance mining. Next, we generate corrective instructions and triplets by CoT prompting the foundation MLLM and conduct quality control with VQA-based consistency filtering. Finally, we refine the retriever through continual training on these triplets with a grouped contrastive scheme, thereby internalizing fine-grained visual-semantic distinctions and realigning the discriminative embedding space of retriever with intrinsic compositional reasoning within the MLLM. Extensive experiments on CIRR and FashionIQ show that ReCALL consistently recalibrates degraded capabilities and achieves state-of-the-art performance. Code will be released soon.
Composed Video Retrieval (CoVR) aims to retrieve a target video from a large gallery using a reference video and a textual query specifying visual modifications. However, existing benchmarks consider only visual changes, ignoring videos that differ in audio despite visual similarity. To address this limitation, we introduce Composed retrieval for Video with its Audio CoVA, a new retrieval task that accounts for both visual and auditory variations. To support this, we construct AV-Comp, a benchmark consisting of video pairs with cross-modal changes and corresponding textual queries that describe the differences. We also propose AVT Compositional Fusion (AVT), which integrates video, audio, and text features by selectively aligning the query to the most relevant modality. AVT outperforms traditional unimodal fusion and serves as a strong baseline for CoVA. Examples from the proposed dataset, including both visual and auditory information, are available at https://perceptualai-lab.github.io/CoVA/.
Recent advancements in information retrieval have highlighted the potential of integrating visual and textual information, yet effective reranking for image-text documents remains challenging due to the modality gap and scarcity of aligned datasets. Meanwhile, existing approaches often rely on large models (7B to 32B parameters) with reasoning-based distillation, incurring unnecessary computational overhead while primarily focusing on textual modalities. In this paper, we propose Rank-Nexus, a multimodal image-text document reranker that performs listwise qualitative reranking on retrieved lists incorporating both images and texts. To bridge the modality gap, we introduce a progressive cross-modal training strategy. We first train modalities separately: leveraging abundant text reranking data, we distill knowledge into the text branch. For images, where data is scarce, we construct distilled pairs from multimodal large language model (MLLM) captions on image retrieval benchmarks. Subsequently, we distill a joint image-text reranking dataset. Rank-Nexus achieves outstanding performance on text reranking benchmarks (TREC, BEIR) and the challenging image reranking benchmark (INQUIRE, MMDocIR), using only a lightweight 2B pretrained visual-language model. This efficient design ensures strong generalization across diverse multimodal scenarios without excessive parameters or reasoning overhead.
The advent of always-on personal AI assistants, enabled by all-day wearable devices such as smart glasses, demands a new level of contextual understanding, one that goes beyond short, isolated events to encompass the continuous, longitudinal stream of egocentric video. Achieving this vision requires advances in long-horizon video understanding, where systems must interpret and recall visual and audio information spanning days or even weeks. Existing methods, including large language models and retrieval-augmented generation, are constrained by limited context windows and lack the ability to perform compositional, multi-hop reasoning over very long video streams. In this work, we address these challenges through EGAgent, an enhanced agentic framework centered on entity scene graphs, which represent people, places, objects, and their relationships over time. Our system equips a planning agent with tools for structured search and reasoning over these graphs, as well as hybrid visual and audio search capabilities, enabling detailed, cross-modal, and temporally coherent reasoning. Experiments on the EgoLifeQA and Video-MME (Long) datasets show that our method achieves state-of-the-art performance on EgoLifeQA (57.5%) and competitive performance on Video-MME (Long) (74.1%) for complex longitudinal video understanding tasks.
We propose Enginuity - the first open, large-scale, multi-domain engineering diagram dataset with comprehensive structural annotations designed for automated diagram parsing. By capturing hierarchical component relationships, connections, and semantic elements across diverse engineering domains, our proposed dataset would enable multimodal large language models to address critical downstream tasks including structured diagram parsing, cross-modal information retrieval, and AI-assisted engineering simulation. Enginuity would be transformative for AI for Scientific Discovery by enabling artificial intelligence systems to comprehend and manipulate the visual-structural knowledge embedded in engineering diagrams, breaking down a fundamental barrier that currently prevents AI from fully participating in scientific workflows where diagram interpretation, technical drawing analysis, and visual reasoning are essential for hypothesis generation, experimental design, and discovery.
Graph Foundation Models (GFMs) have emerged as a frontier in graph learning, which are expected to deliver transferable representations across diverse tasks. However, GFMs remain constrained by in-memory bottlenecks: they attempt to encode knowledge into model parameters, which limits semantic capacity, introduces heavy lossy compression with conflicts, and entangles graph representation with the knowledge in ways that hinder efficient adaptation, undermining scalability and interpretability. In this work,we propose RAG-GFM, a Retrieval-Augmented Generation aided Graph Foundation Model that offloads knowledge from parameters and complements parameterized learning. To externalize graph knowledge, we build a dual-modal unified retrieval module, where a semantic store from prefix-structured text and a structural store from centrality-based motif. To preserve heterogeneous information, we design a dual-view alignment objective that contrasts both modalities to capture both content and relational patterns. To enable efficient downstream adaptation, we perform in-context augmentation to enrich supporting instances with retrieved texts and motifs as contextual evidence. Extensive experiments on five benchmark graph datasets demonstrate that RAG-GFM consistently outperforms 13 state-of-the-art baselines in both cross-domain node and graph classification, achieving superior effectiveness and efficiency.
Graph Foundation Models (GFMs) have emerged as a frontier in graph learning, which are expected to deliver transferable representations across diverse tasks. However, GFMs remain constrained by in-memory bottlenecks: they attempt to encode knowledge into model parameters, which limits semantic capacity, introduces heavy lossy compression with conflicts, and entangles graph representation with the knowledge in ways that hinder efficient adaptation, undermining scalability and interpretability. In this work,we propose RAG-GFM, a Retrieval-Augmented Generation aided Graph Foundation Model that offloads knowledge from parameters and complements parameterized learning. To externalize graph knowledge, we build a dual-modal unified retrieval module, where a semantic store from prefix-structured text and a structural store from centrality-based motif. To preserve heterogeneous information, we design a dual-view alignment objective that contrasts both modalities to capture both content and relational patterns. To enable efficient downstream adaptation, we perform in-context augmentation to enrich supporting instances with retrieved texts and motifs as contextual evidence. Extensive experiments on five benchmark graph datasets demonstrate that RAG-GFM consistently outperforms 13 state-of-the-art baselines in both cross-domain node and graph classification, achieving superior effectiveness and efficiency.
Query formulation from internal information needs remains fundamentally challenging across all Information Retrieval paradigms due to cognitive complexity and physical impairments. Brain Passage Retrieval (BPR) addresses this by directly mapping EEG signals to passage representations without intermediate text translation. However, existing BPR research exclusively uses visual stimuli, leaving critical questions unanswered: Can auditory EEG enable effective retrieval for voice-based interfaces and visually impaired users? Can training on combined EEG datasets from different sensory modalities improve performance despite severe data scarcity? We present the first systematic investigation of auditory EEG for BPR and evaluate cross-sensory training benefits. Using dual encoder architectures with four pooling strategies (CLS, mean, max, multi-vector), we conduct controlled experiments comparing auditory-only, visual-only, and combined training on the Alice (auditory) and Nieuwland (visual) datasets. Results demonstrate that auditory EEG consistently outperforms visual EEG, and cross-sensory training with CLS pooling achieves substantial improvements over individual training: 31% in MRR (0.474), 43% in Hit@1 (0.314), and 28% in Hit@10 (0.858). Critically, combined auditory EEG models surpass BM25 text baselines (MRR: 0.474 vs 0.428), establishing neural queries as competitive with traditional retrieval whilst enabling accessible interfaces. These findings validate auditory neural interfaces for IR tasks and demonstrate that cross-sensory training addresses data scarcity whilst outperforming single-modality approaches Code: https://github.com/NiallMcguire/Audio_BPR