Abstract:Recent research on proactive conversational agents (PCAs) mainly focuses on improving the system's capabilities in anticipating and planning action sequences to accomplish tasks and achieve goals before users articulate their requests. This perspectives paper highlights the importance of moving towards building human-centered PCAs that emphasize human needs and expectations, and that considers ethical and social implications of these agents, rather than solely focusing on technological capabilities. The distinction between a proactive and a reactive system lies in the proactive system's initiative-taking nature. Without thoughtful design, proactive systems risk being perceived as intrusive by human users. We address the issue by establishing a new taxonomy concerning three key dimensions of human-centered PCAs, namely Intelligence, Adaptivity, and Civility. We discuss potential research opportunities and challenges based on this new taxonomy upon the five stages of PCA system construction. This perspectives paper lays a foundation for the emerging area of conversational information retrieval research and paves the way towards advancing human-centered proactive conversational systems.
Abstract:The integration of emotional support into various conversational scenarios presents profound societal benefits, such as social interactions, mental health counseling, and customer service. However, there are unsolved challenges that hinder real-world applications in this field, including limited data availability and the absence of well-accepted model training paradigms. This work endeavors to navigate these challenges by harnessing the capabilities of Large Language Models (LLMs). We introduce an innovative methodology that synthesizes human insights with the computational prowess of LLMs to curate an extensive emotional support dialogue dataset. Our approach is initiated with a meticulously designed set of dialogues spanning diverse scenarios as generative seeds. By utilizing the in-context learning potential of ChatGPT, we recursively generate an ExTensible Emotional Support dialogue dataset, named ExTES. Following this, we deploy advanced tuning techniques on the LLaMA model, examining the impact of diverse training strategies, ultimately yielding an LLM meticulously optimized for emotional support interactions. An exhaustive assessment of the resultant model showcases its proficiency in offering emotional support, marking a pivotal step in the realm of emotional support bots and paving the way for subsequent research and implementations.
Abstract:In this work, we propose a hyperparameter optimization method named \emph{HyperTime} to find hyperparameters robust to potential temporal distribution shifts in the unseen test data. Our work is motivated by an important observation that it is, in many cases, possible to achieve temporally robust predictive performance via hyperparameter optimization. Based on this observation, we leverage the `worst-case-oriented' philosophy from the robust optimization literature to help find such robust hyperparameter configurations. HyperTime imposes a lexicographic priority order on average validation loss and worst-case validation loss over chronological validation sets. We perform a theoretical analysis on the upper bound of the expected test loss, which reveals the unique advantages of our approach. We also demonstrate the strong empirical performance of the proposed method on multiple machine learning tasks with temporal distribution shifts.
Abstract:The aerosol mixing state significantly affects the climate and health impacts of atmospheric aerosol particles. Simplified aerosol mixing state assumptions, common in Earth System models, can introduce errors in the prediction of these aerosol impacts. The aerosol mixing state index, a metric to quantify aerosol mixing state, is a convenient measure for quantifying these errors. Global estimates of aerosol mixing state indices have recently become available via supervised learning models, but require regionalization to ease spatiotemporal analysis. Here we developed a simple but effective unsupervised learning approach to regionalize predictions of global aerosol mixing state indices. We used the monthly average of aerosol mixing state indices global distribution as the input data. Grid cells were then clustered into regions by the k-means algorithm without explicit spatial information as input. This approach resulted in eleven regions over the globe with specific spatial aggregation patterns. Each region exhibited a unique distribution of mixing state indices and aerosol compositions, showing the effectiveness of the unsupervised regionalization approach. This study defines "aerosol mixing state zones" that could be useful for atmospheric science research.