Abstract:Monitoring the fuel moisture content (FMC) of vegetation is crucial for managing and mitigating the impact of wildland fires. The combination of in situ FMC observations with numerical weather prediction (NWP) models and satellite retrievals has enabled the development of machine learning (ML) models to estimate dead FMC retrievals over the contiguous US (CONUS). In this study, ML models were trained using variables from the National Water Model and the High-Resolution Rapid Refresh (HRRR) NWP models, and static variables characterizing the surface properties, as well as surface reflectances and land surface temperature (LST) retrievals from the VIIRS instrument on board the Suomi-NPP satellite system. Extensive hyper-parameter optimization yielded skillful FMC models compared to a daily climatography RMSE (+44\%) and to an hourly climatography RMSE (+24\%). Furthermore, VIIRS retrievals were important predictors for estimating FMC, contributing significantly as a group due to their high band-correlation. In contrast, individual predictors in the HRRR group had relatively high importance according to the explainability techniques used. When both HRRR and VIIRS retrievals were not used as model inputs, the performance dropped significantly. If VIIRS retrievals were not used, the RMSE performance was worse. This highlights the importance of VIIRS retrievals in modeling FMC, which yielded better models compared to MODIS. Overall, the importance of the VIIRS group of predictors corroborates the dynamic relationship between the 10-h fuel and the atmosphere and soil moisture. These findings emphasize the significance of selecting appropriate data sources for predicting FMC with ML models, with VIIRS retrievals and selected HRRR variables being critical components in producing skillful FMC estimates.
Abstract:Holographic cloud probes provide unprecedented information on cloud particle density, size and position. Each laser shot captures particles within a large volume, where images can be computationally refocused to determine particle size and shape. However, processing these holograms, either with standard methods or with machine learning (ML) models, requires considerable computational resources, time and occasional human intervention. ML models are trained on simulated holograms obtained from the physical model of the probe since real holograms have no absolute truth labels. Using another processing method to produce labels would be subject to errors that the ML model would subsequently inherit. Models perform well on real holograms only when image corruption is performed on the simulated images during training, thereby mimicking non-ideal conditions in the actual probe (Schreck et. al, 2022). Optimizing image corruption requires a cumbersome manual labeling effort. Here we demonstrate the application of the neural style translation approach (Gatys et. al, 2016) to the simulated holograms. With a pre-trained convolutional neural network (VGG-19), the simulated holograms are ``stylized'' to resemble the real ones obtained from the probe, while at the same time preserving the simulated image ``content'' (e.g. the particle locations and sizes). Two image similarity metrics concur that the stylized images are more like real holograms than the synthetic ones. With an ML model trained to predict particle locations and shapes on the stylized data sets, we observed comparable performance on both simulated and real holograms, obviating the need to perform manual labeling. The described approach is not specific to hologram images and could be applied in other domains for capturing noise and imperfections in observational instruments to make simulated data more like real world observations.
Abstract:HOLODEC, an airborne cloud particle imager, captures holographic images of a fixed volume of cloud to characterize the types and sizes of cloud particles, such as water droplets and ice crystals. Cloud particle properties include position, diameter, and shape. We present a hologram processing algorithm, HolodecML, that utilizes a neural segmentation model, GPUs, and computational parallelization. HolodecML is trained using synthetically generated holograms based on a model of the instrument, and predicts masks around particles found within reconstructed images. From these masks, the position and size of the detected particles can be characterized in three dimensions. In order to successfully process real holograms, we find we must apply a series of image corrupting transformations and noise to the synthetic images used in training. In this evaluation, HolodecML had comparable position and size estimation performance to the standard processing method, but improved particle detection by nearly 20\% on several thousand manually labeled HOLODEC images. However, the improvement only occurred when image corruption was performed on the simulated images during training, thereby mimicking non-ideal conditions in the actual probe. The trained model also learned to differentiate artifacts and other impurities in the HOLODEC images from the particles, even though no such objects were present in the training data set, while the standard processing method struggled to separate particles from artifacts. The novelty of the training approach, which leveraged noise as a means for parameterizing non-ideal aspects of the HOLODEC detector, could be applied in other domains where the theoretical model is incapable of fully describing the real-world operation of the instrument and accurate truth data required for supervised learning cannot be obtained from real-world observations.