Abstract:Large language models afford opportunities for using computers for intensive tasks, realizing research opportunities that have not been considered before. One such opportunity could be a systematic interrogation of the scientific literature. Here, we show how a large language model can be used to construct a literature review of 2699 publications associated with microphysics parametrizations in the Weather and Research Forecasting (WRF) model, with the goal of learning how they were used and their systematic biases, when simulating precipitation. The database was constructed of publications identified from Web of Science and Scopus searches. The large language model GPT-4 Turbo was used to extract information about model configurations and performance from the text of 2699 publications. Our results reveal the landscape of how nine of the most popular microphysics parameterizations have been used around the world: Lin, Ferrier, WRF Single-Moment, Goddard Cumulus Ensemble, Morrison, Thompson, and WRF Double-Moment. More studies used one-moment parameterizations before 2020 and two-moment parameterizations after 2020. Seven out of nine parameterizations tended to overestimate precipitation. However, systematic biases of parameterizations differed in various regions. Except simulations using the Lin, Ferrier, and Goddard parameterizations that tended to underestimate precipitation over almost all locations, the remaining six parameterizations tended to overestimate, particularly over China, southeast Asia, western United States, and central Africa. This method could be used by other researchers to help understand how the increasingly massive body of scientific literature can be harnessed through the power of artificial intelligence to solve their research problems.
Abstract:Generative AI, such as OpenAI's GPT-4V large-language model, has rapidly entered mainstream discourse. Novel capabilities in image processing and natural-language communication may augment existing forecasting methods. Large language models further display potential to better communicate weather hazards in a style honed for diverse communities and different languages. This study evaluates GPT-4V's ability to interpret meteorological charts and communicate weather hazards appropriately to the user, despite challenges of hallucinations, where generative AI delivers coherent, confident, but incorrect responses. We assess GPT-4V's competence via its web interface ChatGPT in two tasks: (1) generating a severe-weather outlook from weather-chart analysis and conducting self-evaluation, revealing an outlook that corresponds well with a Storm Prediction Center human-issued forecast; and (2) producing hazard summaries in Spanish and English from weather charts. Responses in Spanish, however, resemble direct (not idiomatic) translations from English to Spanish, yielding poorly translated summaries that lose critical idiomatic precision required for optimal communication. Our findings advocate for cautious integration of tools like GPT-4V in meteorology, underscoring the necessity of human oversight and development of trustworthy, explainable AI.