Abstract:Recently, diffusion-based video generation models have achieved significant success. However, existing models often suffer from issues like weak consistency and declining image quality over time. To overcome these challenges, inspired by aesthetic principles, we propose a non-invasive plug-in called Uniform Frame Organizer (UFO), which is compatible with any diffusion-based video generation model. The UFO comprises a series of adaptive adapters with adjustable intensities, which can significantly enhance the consistency between the foreground and background of videos and improve image quality without altering the original model parameters when integrated. The training for UFO is simple, efficient, requires minimal resources, and supports stylized training. Its modular design allows for the combination of multiple UFOs, enabling the customization of personalized video generation models. Furthermore, the UFO also supports direct transferability across different models of the same specification without the need for specific retraining. The experimental results indicate that UFO effectively enhances video generation quality and demonstrates its superiority in public video generation benchmarks. The code will be publicly available at https://github.com/Delong-liu-bupt/UFO.
Abstract:Large Language Models (LLMs) exhibit impressive reasoning and data augmentation capabilities in various NLP tasks. However, what about small models? In this work, we propose TeacherLM-7.1B, capable of annotating relevant fundamentals, chain of thought, and common mistakes for most NLP samples, which makes annotation more than just an answer, thus allowing other models to learn "why" instead of just "what". The TeacherLM-7.1B model achieved a zero-shot score of 52.3 on MMLU, surpassing most models with over 100B parameters. Even more remarkable is its data augmentation ability. Based on TeacherLM-7.1B, we augmented 58 NLP datasets and taught various student models with different parameters from OPT and BLOOM series in a multi-task setting. The experimental results indicate that the data augmentation provided by TeacherLM has brought significant benefits. We will release the TeacherLM series of models and augmented datasets as open-source.
Abstract:Compared to news and chat summarization, the development of meeting summarization is hugely decelerated by the limited data. To this end, we introduce a versatile Chinese meeting summarization dataset, dubbed VCSum, consisting of 239 real-life meetings, with a total duration of over 230 hours. We claim our dataset is versatile because we provide the annotations of topic segmentation, headlines, segmentation summaries, overall meeting summaries, and salient sentences for each meeting transcript. As such, the dataset can adapt to various summarization tasks or methods, including segmentation-based summarization, multi-granularity summarization and retrieval-then-generate summarization. Our analysis confirms the effectiveness and robustness of VCSum. We also provide a set of benchmark models regarding different downstream summarization tasks on VCSum to facilitate further research. The dataset and code will be released at https://github.com/hahahawu/VCSum.
Abstract:The conventional summarization model often fails to capture critical information in meeting transcripts, as meeting corpus usually involves multiple parties with lengthy conversations and is stuffed with redundant and trivial content. To tackle this problem, we present SVB, an effective and efficient framework for meeting summarization that `compress' the redundancy while preserving important content via three processes: sliding-window dialogue restoration and \textbf{S}coring, channel-wise importance score \textbf{V}oting, and relative positional \textbf{B}ucketing. Specifically, under the self-supervised paradigm, the sliding-window scoring aims to rate the importance of each token from multiple views. Then these ratings are aggregated by channel-wise voting. Tokens with high ratings will be regarded as salient information and labeled as \textit{anchors}. Finally, to tailor the lengthy input to an acceptable length for the language model, the relative positional bucketing algorithm is performed to retain the anchors while compressing other irrelevant contents in different granularities. Without large-scale pre-training or expert-grade annotating tools, our proposed method outperforms previous state-of-the-art approaches. A vast amount of evaluations and analyses are conducted to prove the effectiveness of our method.
Abstract:Forms are a common type of document in real life and carry rich information through textual contents and the organizational structure. To realize automatic processing of forms, word grouping and relation extraction are two fundamental and crucial steps after preliminary processing of optical character reader (OCR). Word grouping is to aggregate words that belong to the same semantic entity, and relation extraction is to predict the links between semantic entities. Existing works treat them as two individual tasks, but these two tasks are correlated and can reinforce each other. The grouping process will refine the integrated representation of the corresponding entity, and the linking process will give feedback to the grouping performance. For this purpose, we acquire multimodal features from both textual data and layout information and build an end-to-end model through multitask training to combine word grouping and relation extraction to enhance performance on each task. We validate our proposed method on a real-world, fully-annotated, noisy-scanned benchmark, FUNSD, and extensive experiments demonstrate the effectiveness of our method.