Abstract:We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token. To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in DeepSeek-V2. Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance. We pre-train DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to fully harness its capabilities. Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source models and achieves performance comparable to leading closed-source models. Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training. In addition, its training process is remarkably stable. Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks. The model checkpoints are available at https://github.com/deepseek-ai/DeepSeek-V3.
Abstract:This paper addresses the challenges of Online Action Recognition (OAR), a framework that involves instantaneous analysis and classification of behaviors in video streams. OAR must operate under stringent latency constraints, making it an indispensable component for real-time feedback for edge computing. Existing methods, which typically rely on the processing of entire video clips, fall short in scenarios requiring immediate recognition. To address this, we designed EdgeOAR, a novel framework specifically designed for OAR on edge devices. EdgeOAR includes the Early Exit-oriented Task-specific Feature Enhancement Module (TFEM), which comprises lightweight submodules to optimize features in both temporal and spatial dimensions. We design an iterative training method to enable TFEM learning features from the beginning of the video. Additionally, EdgeOAR includes an Inverse Information Entropy (IIE) and Modality Consistency (MC)-driven fusion module to fuse features and make better exit decisions. This design overcomes the two main challenges: robust modeling of spatio-temporal action representations with limited initial frames in online video streams and balancing accuracy and efficiency on resource-constrained edge devices. Experiments show that on the UCF-101 dataset, our method EdgeOAR reduces latency by 99.23% and energy consumption by 99.28% compared to state-of-the-art (SOTA) method. And achieves an adequate accuracy on edge devices.
Abstract:Artificial intelligence generated content (AIGC), a rapidly advancing technology, is transforming content creation across domains, such as text, images, audio, and video. Its growing potential has attracted more and more researchers and investors to explore and expand its possibilities. This review traces AIGC's evolution through four developmental milestones-ranging from early rule-based systems to modern transfer learning models-within a unified framework that highlights how each milestone contributes uniquely to content generation. In particular, the paper employs a common example across all milestones to illustrate the capabilities and limitations of methods within each phase, providing a consistent evaluation of AIGC methodologies and their development. Furthermore, this paper addresses critical challenges associated with AIGC and proposes actionable strategies to mitigate them. This study aims to guide researchers and practitioners in selecting and optimizing AIGC models to enhance the quality and efficiency of content creation across diverse domains.
Abstract:Point tracking is a challenging task in computer vision, aiming to establish point-wise correspondence across long video sequences. Recent advancements have primarily focused on temporal modeling techniques to improve local feature similarity, often overlooking the valuable semantic consistency inherent in tracked points. In this paper, we introduce a novel approach leveraging language embeddings to enhance the coherence of frame-wise visual features related to the same object. Our proposed method, termed autogenic language embedding for visual feature enhancement, strengthens point correspondence in long-term sequences. Unlike existing visual-language schemes, our approach learns text embeddings from visual features through a dedicated mapping network, enabling seamless adaptation to various tracking tasks without explicit text annotations. Additionally, we introduce a consistency decoder that efficiently integrates text tokens into visual features with minimal computational overhead. Through enhanced visual consistency, our approach significantly improves tracking trajectories in lengthy videos with substantial appearance variations. Extensive experiments on widely-used tracking benchmarks demonstrate the superior performance of our method, showcasing notable enhancements compared to trackers relying solely on visual cues.
Abstract:In the search for more effective education, there is a widespread effort to develop better approaches to personalize student education. Unassisted, educators often do not have time or resources to personally support every student in a given classroom. Motivated by this issue, and by recent advancements in artificial intelligence, this paper presents a general-purpose framework for personalized student support, applicable to any virtual educational system such as a serious game or an intelligent tutoring system. To fit any educational situation, we apply ontologies for their semantic organization, combining them with data collection considerations and multi-agent reinforcement learning. The result is a modular system that can be adapted to any virtual educational software to provide useful personalized assistance to students.
Abstract:Due to the effective performance of multi-scale feature fusion, Path Aggregation FPN (PAFPN) is widely employed in YOLO detectors. However, it cannot efficiently and adaptively integrate high-level semantic information with low-level spatial information simultaneously. We propose a new model named MAF-YOLO in this paper, which is a novel object detection framework with a versatile neck named Multi-Branch Auxiliary FPN (MAFPN). Within MAFPN, the Superficial Assisted Fusion (SAF) module is designed to combine the output of the backbone with the neck, preserving an optimal level of shallow information to facilitate subsequent learning. Meanwhile, the Advanced Assisted Fusion (AAF) module deeply embedded within the neck conveys a more diverse range of gradient information to the output layer. Furthermore, our proposed Re-parameterized Heterogeneous Efficient Layer Aggregation Network (RepHELAN) module ensures that both the overall model architecture and convolutional design embrace the utilization of heterogeneous large convolution kernels. Therefore, this guarantees the preservation of information related to small targets while simultaneously achieving the multi-scale receptive field. Finally, taking the nano version of MAF-YOLO for example, it can achieve 42.4% AP on COCO with only 3.76M learnable parameters and 10.51G FLOPs, and approximately outperforms YOLOv8n by about 5.1%. The source code of this work is available at: https://github.com/yang-0201/MAF-YOLO.
Abstract:Few-shot object detection (FSOD) aims to extract semantic knowledge from limited object instances of novel categories within a target domain. Recent advances in FSOD focus on fine-tuning the base model based on a few objects via meta-learning or data augmentation. Despite their success, the majority of them are grounded with parametric readjustment to generalize on novel objects, which face considerable challenges in Industry 5.0, such as (i) a certain amount of fine-tuning time is required, and (ii) the parameters of the constructed model being unavailable due to the privilege protection, making the fine-tuning fail. Such constraints naturally limit its application in scenarios with real-time configuration requirements or within black-box settings. To tackle the challenges mentioned above, we formalize a novel FSOD task, referred to as Test TIme Few Shot DEtection (TIDE), where the model is un-tuned in the configuration procedure. To that end, we introduce an asymmetric architecture for learning a support-instance-guided dynamic category classifier. Further, a cross-attention module and a multi-scale resizer are provided to enhance the model performance. Experimental results on multiple few-shot object detection platforms reveal that the proposed TIDE significantly outperforms existing contemporary methods. The implementation codes are available at https://github.com/deku-0621/TIDE
Abstract:Noise is usually regarded as adversarial to extract the effective dynamics from time series, such that the conventional data-driven approaches usually aim at learning the dynamics by mitigating the noisy effect. However, noise can have a functional role of driving transitions between stable states underlying many natural and engineered stochastic dynamics. To capture such stochastic transitions from data, we find that leveraging a machine learning model, reservoir computing as a type of recurrent neural network, can learn noise-induced transitions. We develop a concise training protocol for tuning hyperparameters, with a focus on a pivotal hyperparameter controlling the time scale of the reservoir dynamics. The trained model generates accurate statistics of transition time and the number of transitions. The approach is applicable to a wide class of systems, including a bistable system under a double-well potential, with either white noise or colored noise. It is also aware of the asymmetry of the double-well potential, the rotational dynamics caused by non-detailed balance, and transitions in multi-stable systems. For the experimental data of protein folding, it learns the transition time between folded states, providing a possibility of predicting transition statistics from a small dataset. The results demonstrate the capability of machine-learning methods in capturing noise-induced phenomena.
Abstract:Multi-agent reinforcement learning (MARL) is a widely used Artificial Intelligence (AI) technique. However, current studies and applications need to address its scalability, non-stationarity, and trustworthiness. This paper aims to review methods and applications and point out research trends and visionary prospects for the next decade. First, this paper summarizes the basic methods and application scenarios of MARL. Second, this paper outlines the corresponding research methods and their limitations on safety, robustness, generalization, and ethical constraints that need to be addressed in the practical applications of MARL. In particular, we believe that trustworthy MARL will become a hot research topic in the next decade. In addition, we suggest that considering human interaction is essential for the practical application of MARL in various societies. Therefore, this paper also analyzes the challenges while MARL is applied to human-machine interaction.
Abstract:The stochastic reaction network is widely used to model stochastic processes in physics, chemistry and biology. However, the size of the state space increases exponentially with the number of species, making it challenging to investigate the time evolution of the chemical master equation for the reaction network. Here, we propose a machine-learning approach using the variational autoregressive network to solve the chemical master equation. The approach is based on the reinforcement learning framework and does not require any data simulated in prior by another method. Different from simulating single trajectories, the proposed approach tracks the time evolution of the joint probability distribution in the state space of species counts, and supports direct sampling on configurations and computing their normalized joint probabilities. We apply the approach to various systems in physics and biology, and demonstrate that it accurately generates the probability distribution over time in the genetic toggle switch, the early life self-replicator, the epidemic model and the intracellular signaling cascade. The variational autoregressive network exhibits a plasticity in representing the multi-modal distribution by feedback regulations, cooperates with the conservation law, enables time-dependent reaction rates, and is efficient for high-dimensional reaction networks with allowing a flexible upper count limit. The results suggest a general approach to investigate stochastic reaction networks based on modern machine learning.