Huazhong University of Science and Technology, Wuhan, China
Abstract:Despite significant advancements in adapting Large Language Models (LLMs) for radiology report generation (RRG), clinical adoption remains challenging due to difficulties in accurately mapping pathological and anatomical features to their corresponding text descriptions. Additionally, semantic agnostic feature extraction further hampers the generation of accurate diagnostic reports. To address these challenges, we introduce Medical Concept Aligned Radiology Report Generation (MCA-RG), a knowledge-driven framework that explicitly aligns visual features with distinct medical concepts to enhance the report generation process. MCA-RG utilizes two curated concept banks: a pathology bank containing lesion-related knowledge, and an anatomy bank with anatomical descriptions. The visual features are aligned with these medical concepts and undergo tailored enhancement. We further propose an anatomy-based contrastive learning procedure to improve the generalization of anatomical features, coupled with a matching loss for pathological features to prioritize clinically relevant regions. Additionally, a feature gating mechanism is employed to filter out low-quality concept features. Finally, the visual features are corresponding to individual medical concepts, and are leveraged to guide the report generation process. Experiments on two public benchmarks (MIMIC-CXR and CheXpert Plus) demonstrate that MCA-RG achieves superior performance, highlighting its effectiveness in radiology report generation.
Abstract:Accurate prognosis of non-small cell lung cancer (NSCLC) patients undergoing immunotherapy is essential for personalized treatment planning, enabling informed patient decisions, and improving both treatment outcomes and quality of life. However, the lack of large, relevant datasets and effective multi-modal feature fusion strategies pose significant challenges in this domain. To address these challenges, we present a large-scale dataset and introduce a novel framework for multi-modal feature fusion aimed at enhancing the accuracy of survival prediction. The dataset comprises 3D CT images and corresponding clinical records from NSCLC patients treated with immune checkpoint inhibitors (ICI), along with progression-free survival (PFS) and overall survival (OS) data. We further propose a cross-modality masked learning approach for medical feature fusion, consisting of two distinct branches, each tailored to its respective modality: a Slice-Depth Transformer for extracting 3D features from CT images and a graph-based Transformer for learning node features and relationships among clinical variables in tabular data. The fusion process is guided by a masked modality learning strategy, wherein the model utilizes the intact modality to reconstruct missing components. This mechanism improves the integration of modality-specific features, fostering more effective inter-modality relationships and feature interactions. Our approach demonstrates superior performance in multi-modal integration for NSCLC survival prediction, surpassing existing methods and setting a new benchmark for prognostic models in this context.
Abstract:Social media popularity prediction plays a crucial role in content optimization, marketing strategies, and user engagement enhancement across digital platforms. However, predicting post popularity remains challenging due to the complex interplay between visual, textual, temporal, and user behavioral factors. This paper presents HyperFusion, a hierarchical multimodal ensemble learning framework for social media popularity prediction. Our approach employs a three-tier fusion architecture that progressively integrates features across abstraction levels: visual representations from CLIP encoders, textual embeddings from transformer models, and temporal-spatial metadata with user characteristics. The framework implements a hierarchical ensemble strategy combining CatBoost, TabNet, and custom multi-layer perceptrons. To address limited labeled data, we propose a two-stage training methodology with pseudo-labeling and iterative refinement. We introduce novel cross-modal similarity measures and hierarchical clustering features that capture inter-modal dependencies. Experimental results demonstrate that HyperFusion achieves competitive performance on the SMP challenge dataset. Our team achieved third place in the SMP Challenge 2025 (Image Track). The source code is available at https://anonymous.4open.science/r/SMPDImage.
Abstract:Social media platforms serve as central hubs for content dissemination, opinion expression, and public engagement across diverse modalities. Accurately predicting the popularity of social media videos enables valuable applications in content recommendation, trend detection, and audience engagement. In this paper, we present Multimodal Video Predictor (MVP), our winning solution to the Video Track of the SMP Challenge 2025. MVP constructs expressive post representations by integrating deep video features extracted from pretrained models with user metadata and contextual information. The framework applies systematic preprocessing techniques, including log-transformations and outlier removal, to improve model robustness. A gradient-boosted regression model is trained to capture complex patterns across modalities. Our approach ranked first in the official evaluation of the Video Track, demonstrating its effectiveness and reliability for multimodal video popularity prediction on social platforms. The source code is available at https://anonymous.4open.science/r/SMPDVideo.
Abstract:Video-based Large Language Models (Video-LLMs) have witnessed substantial advancements in recent years, propelled by the advancement in multi-modal LLMs. Although these models have demonstrated proficiency in providing the overall description of videos, they struggle with fine-grained understanding, particularly in aspects such as visual dynamics and video details inquiries. To tackle these shortcomings, we find that fine-tuning Video-LLMs on self-supervised fragment tasks, greatly improve their fine-grained video understanding abilities. Hence we propose two key contributions:(1) Self-Supervised Fragment Fine-Tuning (SF$^2$T), a novel effortless fine-tuning method, employs the rich inherent characteristics of videos for training, while unlocking more fine-grained understanding ability of Video-LLMs. Moreover, it relieves researchers from labor-intensive annotations and smartly circumvents the limitations of natural language, which often fails to capture the complex spatiotemporal variations in videos; (2) A novel benchmark dataset, namely FineVidBench, for rigorously assessing Video-LLMs' performance at both the scene and fragment levels, offering a comprehensive evaluation of their capabilities. We assessed multiple models and validated the effectiveness of SF$^2$T on them. Experimental results reveal that our approach improves their ability to capture and interpret spatiotemporal details.
Abstract:A recent endeavor in one class of video anomaly detection is to leverage diffusion models and posit the task as a generation problem, where the diffusion model is trained to recover normal patterns exclusively, thus reporting abnormal patterns as outliers. Yet, existing attempts neglect the various formations of anomaly and predict normal samples at the feature level regardless that abnormal objects in surveillance videos are often relatively small. To address this, a novel patch-based diffusion model is proposed, specifically engineered to capture fine-grained local information. We further observe that anomalies in videos manifest themselves as deviations in both appearance and motion. Therefore, we argue that a comprehensive solution must consider both of these aspects simultaneously to achieve accurate frame prediction. To address this, we introduce innovative motion and appearance conditions that are seamlessly integrated into our patch diffusion model. These conditions are designed to guide the model in generating coherent and contextually appropriate predictions for both semantic content and motion relations. Experimental results in four challenging video anomaly detection datasets empirically substantiate the efficacy of our proposed approach, demonstrating that it consistently outperforms most existing methods in detecting abnormal behaviors.
Abstract:In this paper, we introduce Ref-GS, a novel approach for directional light factorization in 2D Gaussian splatting, which enables photorealistic view-dependent appearance rendering and precise geometry recovery. Ref-GS builds upon the deferred rendering of Gaussian splatting and applies directional encoding to the deferred-rendered surface, effectively reducing the ambiguity between orientation and viewing angle. Next, we introduce a spherical Mip-grid to capture varying levels of surface roughness, enabling roughness-aware Gaussian shading. Additionally, we propose a simple yet efficient geometry-lighting factorization that connects geometry and lighting via the vector outer product, significantly reducing renderer overhead when integrating volumetric attributes. Our method achieves superior photorealistic rendering for a range of open-world scenes while also accurately recovering geometry.
Abstract:Point tracking is a challenging task in computer vision, aiming to establish point-wise correspondence across long video sequences. Recent advancements have primarily focused on temporal modeling techniques to improve local feature similarity, often overlooking the valuable semantic consistency inherent in tracked points. In this paper, we introduce a novel approach leveraging language embeddings to enhance the coherence of frame-wise visual features related to the same object. Our proposed method, termed autogenic language embedding for visual feature enhancement, strengthens point correspondence in long-term sequences. Unlike existing visual-language schemes, our approach learns text embeddings from visual features through a dedicated mapping network, enabling seamless adaptation to various tracking tasks without explicit text annotations. Additionally, we introduce a consistency decoder that efficiently integrates text tokens into visual features with minimal computational overhead. Through enhanced visual consistency, our approach significantly improves tracking trajectories in lengthy videos with substantial appearance variations. Extensive experiments on widely-used tracking benchmarks demonstrate the superior performance of our method, showcasing notable enhancements compared to trackers relying solely on visual cues.
Abstract:The essence of multi-modal fusion lies in exploiting the complementary information inherent in diverse modalities. However, prevalent fusion methods rely on traditional neural architectures and are inadequately equipped to capture the dynamics of interactions across modalities, particularly in presence of complex intra- and inter-modality correlations. Recent advancements in State Space Models (SSMs), notably exemplified by the Mamba model, have emerged as promising contenders. Particularly, its state evolving process implies stronger modality fusion paradigm, making multi-modal fusion on SSMs an appealing direction. However, fusing multiple modalities is challenging for SSMs due to its hardware-aware parallelism designs. To this end, this paper proposes the Coupled SSM model, for coupling state chains of multiple modalities while maintaining independence of intra-modality state processes. Specifically, in our coupled scheme, we devise an inter-modal hidden states transition scheme, in which the current state is dependent on the states of its own chain and that of the neighbouring chains at the previous time-step. To fully comply with the hardware-aware parallelism, we devise an expedite coupled state transition scheme and derive its corresponding global convolution kernel for parallelism. Extensive experiments on CMU-MOSEI, CH-SIMS, CH-SIMSV2 through multi-domain input verify the effectiveness of our model compared to current state-of-the-art methods, improved F1-Score by 0.4\%, 0.9\%, and 2.3\% on the three datasets respectively, 49\% faster inference and 83.7\% GPU memory save. The results demonstrate that Coupled Mamba model is capable of enhanced multi-modal fusion.
Abstract:Editing objects within a scene is a critical functionality required across a broad spectrum of applications in computer vision and graphics. As 3D Gaussian Splatting (3DGS) emerges as a frontier in scene representation, the effective modification of 3D Gaussian scenes has become increasingly vital. This process entails accurately retrieve the target objects and subsequently performing modifications based on instructions. Though available in pieces, existing techniques mainly embed sparse semantics into Gaussians for retrieval, and rely on an iterative dataset update paradigm for editing, leading to over-smoothing or inconsistency issues. To this end, this paper proposes a systematic approach, namely TIGER, for coherent text-instructed 3D Gaussian retrieval and editing. In contrast to the top-down language grounding approach for 3D Gaussians, we adopt a bottom-up language aggregation strategy to generate a denser language embedded 3D Gaussians that supports open-vocabulary retrieval. To overcome the over-smoothing and inconsistency issues in editing, we propose a Coherent Score Distillation (CSD) that aggregates a 2D image editing diffusion model and a multi-view diffusion model for score distillation, producing multi-view consistent editing with much finer details. In various experiments, we demonstrate that our TIGER is able to accomplish more consistent and realistic edits than prior work.