Abstract:Multi-Object Tracking (MOT) aims to associate multiple objects across video frames and is a challenging vision task due to inherent complexities in the tracking environment. Most existing approaches train and track within a single domain, resulting in a lack of cross-domain generalizability to data from other domains. While several works have introduced natural language representation to bridge the domain gap in visual tracking, these textual descriptions often provide too high-level a view and fail to distinguish various instances within the same class. In this paper, we address this limitation by developing IP-MOT, an end-to-end transformer model for MOT that operates without concrete textual descriptions. Our approach is underpinned by two key innovations: Firstly, leveraging a pre-trained vision-language model, we obtain instance-level pseudo textual descriptions via prompt-tuning, which are invariant across different tracking scenes; Secondly, we introduce a query-balanced strategy, augmented by knowledge distillation, to further boost the generalization capabilities of our model. Extensive experiments conducted on three widely used MOT benchmarks, including MOT17, MOT20, and DanceTrack, demonstrate that our approach not only achieves competitive performance on same-domain data compared to state-of-the-art models but also significantly improves the performance of query-based trackers by large margins for cross-domain inputs.
Abstract:Point tracking is a challenging task in computer vision, aiming to establish point-wise correspondence across long video sequences. Recent advancements have primarily focused on temporal modeling techniques to improve local feature similarity, often overlooking the valuable semantic consistency inherent in tracked points. In this paper, we introduce a novel approach leveraging language embeddings to enhance the coherence of frame-wise visual features related to the same object. Our proposed method, termed autogenic language embedding for visual feature enhancement, strengthens point correspondence in long-term sequences. Unlike existing visual-language schemes, our approach learns text embeddings from visual features through a dedicated mapping network, enabling seamless adaptation to various tracking tasks without explicit text annotations. Additionally, we introduce a consistency decoder that efficiently integrates text tokens into visual features with minimal computational overhead. Through enhanced visual consistency, our approach significantly improves tracking trajectories in lengthy videos with substantial appearance variations. Extensive experiments on widely-used tracking benchmarks demonstrate the superior performance of our method, showcasing notable enhancements compared to trackers relying solely on visual cues.
Abstract:The essence of multi-modal fusion lies in exploiting the complementary information inherent in diverse modalities. However, prevalent fusion methods rely on traditional neural architectures and are inadequately equipped to capture the dynamics of interactions across modalities, particularly in presence of complex intra- and inter-modality correlations. Recent advancements in State Space Models (SSMs), notably exemplified by the Mamba model, have emerged as promising contenders. Particularly, its state evolving process implies stronger modality fusion paradigm, making multi-modal fusion on SSMs an appealing direction. However, fusing multiple modalities is challenging for SSMs due to its hardware-aware parallelism designs. To this end, this paper proposes the Coupled SSM model, for coupling state chains of multiple modalities while maintaining independence of intra-modality state processes. Specifically, in our coupled scheme, we devise an inter-modal hidden states transition scheme, in which the current state is dependent on the states of its own chain and that of the neighbouring chains at the previous time-step. To fully comply with the hardware-aware parallelism, we devise an expedite coupled state transition scheme and derive its corresponding global convolution kernel for parallelism. Extensive experiments on CMU-MOSEI, CH-SIMS, CH-SIMSV2 through multi-domain input verify the effectiveness of our model compared to current state-of-the-art methods, improved F1-Score by 0.4\%, 0.9\%, and 2.3\% on the three datasets respectively, 49\% faster inference and 83.7\% GPU memory save. The results demonstrate that Coupled Mamba model is capable of enhanced multi-modal fusion.
Abstract:The development of large language models (LLMs) has significantly advanced the emergence of large multimodal models (LMMs). While LMMs have achieved tremendous success by promoting the synergy between multimodal comprehension and creation, they often face challenges when confronted with out-of-distribution data. This is primarily due to their reliance on image encoders trained to encode images into task-relevant features, which may lead them to disregard irrelevant details. Delving into the modeling capabilities of diffusion models for images naturally prompts the question: Can diffusion models serve as the eyes of large language models for image perception? In this paper, we propose DEEM, a simple and effective approach that utilizes the generative feedback of diffusion models to align the semantic distributions of the image encoder. This addresses the drawbacks of previous methods that solely relied on image encoders like ViT, thereby enhancing the model's resilience against out-of-distribution samples and reducing visual hallucinations. Importantly, this is achieved without requiring additional training modules and with fewer training parameters. We extensively evaluated DEEM on both our newly constructed RobustVQA benchmark and another well-known benchmark, POPE, for object hallucination. Compared to the state-of-the-art interleaved content generation models, DEEM exhibits enhanced robustness and a superior capacity to alleviate model hallucinations while utilizing fewer trainable parameters, less pre-training data (10%), and a smaller base model size.
Abstract:In the domain of 3D scene representation, 3D Gaussian Splatting (3DGS) has emerged as a pivotal technology. However, its application to large-scale, high-resolution scenes (exceeding 4k$\times$4k pixels) is hindered by the excessive computational requirements for managing a large number of Gaussians. Addressing this, we introduce 'EfficientGS', an advanced approach that optimizes 3DGS for high-resolution, large-scale scenes. We analyze the densification process in 3DGS and identify areas of Gaussian over-proliferation. We propose a selective strategy, limiting Gaussian increase to key primitives, thereby enhancing the representational efficiency. Additionally, we develop a pruning mechanism to remove redundant Gaussians, those that are merely auxiliary to adjacent ones. For further enhancement, we integrate a sparse order increment for Spherical Harmonics (SH), designed to alleviate storage constraints and reduce training overhead. Our empirical evaluations, conducted on a range of datasets including extensive 4K+ aerial images, demonstrate that 'EfficientGS' not only expedites training and rendering times but also achieves this with a model size approximately tenfold smaller than conventional 3DGS while maintaining high rendering fidelity.
Abstract:Generating realistic human motion sequences from text descriptions is a challenging task that requires capturing the rich expressiveness of both natural language and human motion.Recent advances in diffusion models have enabled significant progress in human motion synthesis.However, existing methods struggle to handle text inputs that describe complex or long motions.In this paper, we propose the Adaptable Motion Diffusion (AMD) model, which leverages a Large Language Model (LLM) to parse the input text into a sequence of concise and interpretable anatomical scripts that correspond to the target motion.This process exploits the LLM's ability to provide anatomical guidance for complex motion synthesis.We then devise a two-branch fusion scheme that balances the influence of the input text and the anatomical scripts on the inverse diffusion process, which adaptively ensures the semantic fidelity and diversity of the synthesized motion.Our method can effectively handle texts with complex or long motion descriptions, where existing methods often fail. Experiments on datasets with relatively more complex motions, such as CLCD1 and CLCD2, demonstrate that our AMD significantly outperforms existing state-of-the-art models.
Abstract:Generating multi-view images from a single input view using image-conditioned diffusion models is a recent advancement and has shown considerable potential. However, issues such as the lack of consistency in synthesized views and over-smoothing in extracted geometry persist. Previous methods integrate multi-view consistency modules or impose additional supervisory to enhance view consistency while compromising on the flexibility of camera positioning and limiting the versatility of view synthesis. In this study, we consider the radiance field optimized during geometry extraction as a more rigid consistency prior, compared to volume and ray aggregation used in previous works. We further identify and rectify a critical bias in the traditional radiance field optimization process through score distillation from a multi-view diffuser. We introduce an Unbiased Score Distillation (USD) that utilizes unconditioned noises from a 2D diffusion model, greatly refining the radiance field fidelity. we leverage the rendered views from the optimized radiance field as the basis and develop a two-step specialization process of a 2D diffusion model, which is adept at conducting object-specific denoising and generating high-quality multi-view images. Finally, we recover faithful geometry and texture directly from the refined multi-view images. Empirical evaluations demonstrate that our optimized geometry and view distillation technique generates comparable results to the state-of-the-art models trained on extensive datasets, all while maintaining freedom in camera positioning. Please see our project page at https://youjiazhang.github.io/USD/.
Abstract:Image-to-image translation (I2I), and particularly its subfield of appearance transfer, which seeks to alter the visual appearance between images while maintaining structural coherence, presents formidable challenges. Despite significant advancements brought by diffusion models, achieving fine-grained transfer remains complex, particularly in terms of retaining detailed structural elements and ensuring information fidelity. This paper proposes an innovative framework designed to surmount these challenges by integrating various aspects of semantic matching, appearance transfer, and latent deviation. A pivotal aspect of our approach is the strategic use of the predicted $x_0$ space by diffusion models within the latent space of diffusion processes. This is identified as a crucial element for the precise and natural transfer of fine-grained details. Our framework exploits this space to accomplish semantic alignment between source and target images, facilitating mask-wise appearance transfer for improved feature acquisition. A significant advancement of our method is the seamless integration of these features into the latent space, enabling more nuanced latent deviations without necessitating extensive model retraining or fine-tuning. The effectiveness of our approach is demonstrated through extensive experiments, which showcase its ability to adeptly handle fine-grained appearance transfers across a wide range of categories and domains. We provide our code at https://github.com/babahui/Fine-grained-Appearance-Transfer
Abstract:In spite of the rapidly evolving landscape of text-to-image generation, the synthesis and manipulation of multiple entities while adhering to specific relational constraints pose enduring challenges. This paper introduces an innovative progressive synthesis and editing operation that systematically incorporates entities into the target image, ensuring their adherence to spatial and relational constraints at each sequential step. Our key insight stems from the observation that while a pre-trained text-to-image diffusion model adeptly handles one or two entities, it often falters when dealing with a greater number. To address this limitation, we propose harnessing the capabilities of a Large Language Model (LLM) to decompose intricate and protracted text descriptions into coherent directives adhering to stringent formats. To facilitate the execution of directives involving distinct semantic operations-namely insertion, editing, and erasing-we formulate the Stimulus, Response, and Fusion (SRF) framework. Within this framework, latent regions are gently stimulated in alignment with each operation, followed by the fusion of the responsive latent components to achieve cohesive entity manipulation. Our proposed framework yields notable advancements in object synthesis, particularly when confronted with intricate and lengthy textual inputs. Consequently, it establishes a new benchmark for text-to-image generation tasks, further elevating the field's performance standards.
Abstract:Multi-object tracking (MOT) is a challenging vision task that aims to detect individual objects within a single frame and associate them across multiple frames. Recent MOT approaches can be categorized into two-stage tracking-by-detection (TBD) methods and one-stage joint detection and tracking (JDT) methods. Despite the success of these approaches, they also suffer from common problems, such as harmful global or local inconsistency, poor trade-off between robustness and model complexity, and lack of flexibility in different scenes within the same video. In this paper we propose a simple but robust framework that formulates object detection and association jointly as a consistent denoising diffusion process from paired noise boxes to paired ground-truth boxes. This novel progressive denoising diffusion strategy substantially augments the tracker's effectiveness, enabling it to discriminate between various objects. During the training stage, paired object boxes diffuse from paired ground-truth boxes to random distribution, and the model learns detection and tracking simultaneously by reversing this noising process. In inference, the model refines a set of paired randomly generated boxes to the detection and tracking results in a flexible one-step or multi-step denoising diffusion process. Extensive experiments on three widely used MOT benchmarks, including MOT17, MOT20, and Dancetrack, demonstrate that our approach achieves competitive performance compared to the current state-of-the-art methods.