Massachusetts Institute of Technology
Abstract:Auto-evaluation is crucial for assessing response quality and offering feedback for model development. Recent studies have explored training large language models (LLMs) as generative judges to evaluate and critique other models' outputs. In this work, we investigate the idea of learning from both positive and negative data with preference optimization to enhance the evaluation capabilities of LLM judges across an array of different use cases. We achieve this by employing three approaches to collect the preference pairs for different use cases, each aimed at improving our generative judge from a different perspective. Our comprehensive study over a wide range of benchmarks demonstrates the effectiveness of our method. In particular, our generative judge achieves the best performance on 10 out of 13 benchmarks, outperforming strong baselines like GPT-4o and specialized judge models. Further analysis show that our judge model robustly counters inherent biases such as position and length bias, flexibly adapts to any evaluation protocol specified by practitioners, and provides helpful language feedback for improving downstream generator models.
Abstract:Despite the recent proliferation of large language models (LLMs), their training recipes -- model architecture, pre-training data and optimization algorithm -- are often very similar. This naturally raises the question of the similarity among the resulting models. In this paper, we propose a novel setting, imaginary question answering (IQA), to better understand model similarity. In IQA, we ask one model to generate purely imaginary questions (e.g., on completely made-up concepts in physics) and prompt another model to answer. Surprisingly, despite the total fictionality of these questions, all models can answer each other's questions with remarkable success, suggesting a "shared imagination space" in which these models operate during such hallucinations. We conduct a series of investigations into this phenomenon and discuss implications on model homogeneity, hallucination, and computational creativity.
Abstract:Mechanistic interpretability (MI) is an emerging sub-field of interpretability that seeks to understand a neural network model by reverse-engineering its internal computations. Recently, MI has garnered significant attention for interpreting transformer-based language models (LMs), resulting in many novel insights yet introducing new challenges. However, there has not been work that comprehensively reviews these insights and challenges, particularly as a guide for newcomers to this field. To fill this gap, we present a comprehensive survey outlining fundamental objects of study in MI, techniques that have been used for its investigation, approaches for evaluating MI results, and significant findings and applications stemming from the use of MI to understand LMs. In particular, we present a roadmap for beginners to navigate the field and leverage MI for their benefit. Finally, we also identify current gaps in the field and discuss potential future directions.
Abstract:The deployment of Large Language Models (LLMs) and Large Multimodal Models (LMMs) on mobile devices has gained significant attention due to the benefits of enhanced privacy, stability, and personalization. However, the hardware constraints of mobile devices necessitate the use of models with fewer parameters and model compression techniques like quantization. Currently, there is limited understanding of quantization's impact on various task performances, including LLM tasks, LMM tasks, and, critically, trust and safety. There is a lack of adequate tools for systematically testing these models on mobile devices. To address these gaps, we introduce MobileAIBench, a comprehensive benchmarking framework for evaluating mobile-optimized LLMs and LMMs. MobileAIBench assesses models across different sizes, quantization levels, and tasks, measuring latency and resource consumption on real devices. Our two-part open-source framework includes a library for running evaluations on desktops and an iOS app for on-device latency and hardware utilization measurements. Our thorough analysis aims to accelerate mobile AI research and deployment by providing insights into the performance and feasibility of deploying LLMs and LMMs on mobile platforms.
Abstract:Recent large language models (LLMs) have shown indications of mathematical reasoning ability. However it has not been clear how they would fare on more challenging competition-level problems. And while self-generated verbalizations of intermediate reasoning steps (i.e., chain-of-thought prompting) have been shown to be helpful, whether LLMs can make use of helpful side information such as problem-specific hints has not been investigated before. In this paper, we propose a challenging benchmark dataset for enabling such analyses. The Concept and Hint-Annotated Math Problems (CHAMP) consists of high school math competition problems, annotated with concepts, or general math facts, and hints, or problem-specific tricks. These annotations allow us to explore the effects of additional information, such as relevant hints, misleading concepts, or related problems. This benchmark is difficult, with the best model only scoring 58.1% in standard settings. With concepts and hints, performance sometimes improves, indicating that some models can make use of such side information. We further annotate model-generated solutions for their correctness. Using this corpus, we find that models often arrive at the correct final answer through wrong reasoning steps. In addition, we test whether models are able to verify these solutions, and find that most models struggle. The dataset and code are available on the project website.
Abstract:One of the motivations for explainable AI is to allow humans to make better and more informed decisions regarding the use and deployment of AI models. But careful evaluations are needed to assess whether this expectation has been fulfilled. Current evaluations mainly focus on algorithmic properties of explanations, and those that involve human subjects often employ subjective questions to test human's perception of explanation usefulness, without being grounded in objective metrics and measurements. In this work, we evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development. We conduct a mixed-methods user study involving image data to evaluate saliency maps generated by SmoothGrad, GradCAM, and an oracle explanation on two tasks: model selection and counterfactual simulation. To our surprise, we did not find evidence of significant improvement on these tasks when users were provided with any of the saliency maps, even the synthetic oracle explanation designed to be simple to understand and highly indicative of the answer. Nonetheless, explanations did help users more accurately describe the models. These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
Abstract:Large language models (LLMs) such as ChatGPT have demonstrated superior performance on a variety of natural language processing (NLP) tasks including sentiment analysis, mathematical reasoning and summarization. Furthermore, since these models are instruction-tuned on human conversations to produce "helpful" responses, they can and often will produce explanations along with the response, which we call self-explanations. For example, when analyzing the sentiment of a movie review, the model may output not only the positivity of the sentiment, but also an explanation (e.g., by listing the sentiment-laden words such as "fantastic" and "memorable" in the review). How good are these automatically generated self-explanations? In this paper, we investigate this question on the task of sentiment analysis and for feature attribution explanation, one of the most commonly studied settings in the interpretability literature (for pre-ChatGPT models). Specifically, we study different ways to elicit the self-explanations, evaluate their faithfulness on a set of evaluation metrics, and compare them to traditional explanation methods such as occlusion or LIME saliency maps. Through an extensive set of experiments, we find that ChatGPT's self-explanations perform on par with traditional ones, but are quite different from them according to various agreement metrics, meanwhile being much cheaper to produce (as they are generated along with the prediction). In addition, we identified several interesting characteristics of them, which prompt us to rethink many current model interpretability practices in the era of ChatGPT(-like) LLMs.
Abstract:Compositional and domain generalization present significant challenges in semantic parsing, even for state-of-the-art semantic parsers based on pre-trained language models (LMs). In this study, we empirically investigate improving an LM's generalization in semantic parsing with two simple techniques: at the token level, we introduce a token preprocessing method to preserve the semantic boundaries of tokens produced by LM tokenizers; at the sequence level, we propose to use special tokens to mark the boundaries of components aligned between input and output. Our experimental results on two text-to-SQL semantic parsing datasets show that our token preprocessing, although simple, can substantially improve the LM performance on both types of generalization, and our component boundary marking method is particularly helpful for compositional generalization.
Abstract:Counterfactual (CF) explanations, also known as contrastive explanations and recourses, are popular for explaining machine learning model predictions in high-stakes domains. For a subject that receives a negative model prediction (e.g., mortgage application denial), they are similar instances but with positive predictions, which informs the subject of ways to improve. Various properties of CF explanations have been studied, such as validity, feasibility and stability. In this paper, we contribute a novel aspect: their behaviors under iterative partial fulfillment (IPF). Specifically, upon receiving a CF explanation, the subject may only partially fulfills it before requesting a new prediction with a new explanation, and repeat until the prediction is positive. Such partial fulfillment could be due to the subject's limited capability (e.g., can only pay down two out of four credit card accounts at this moment) or an attempt to take the chance (e.g., betting that a monthly salary increase of \$800 is enough even though \$1,000 is recommended). Does such iterative partial fulfillment increase or decrease the total cost of improvement incurred by the subject? We first propose a mathematical formalization of IPF and then demonstrate, both theoretically and empirically, that different CF algorithms exhibit vastly different behaviors under IPF and hence different effects on the subject's welfare, warranting this factor to be considered in the studies of CF algorithms. We discuss implications of our observations and give several directions for future work.
Abstract:While large language models (LLMs) have demonstrated strong capability in structured prediction tasks such as semantic parsing, few amounts of research have explored the underlying mechanisms of their success. Our work studies different methods for explaining an LLM-based semantic parser and qualitatively discusses the explained model behaviors, hoping to inspire future research toward better understanding them.