Abstract:Text-to-video (T2V) generation has gained significant attention recently. However, the costs of training a T2V model from scratch remain persistently high, and there is considerable room for improving the generation performance, especially under limited computation resources. This work explores the continual general pre-training of text-to-video models, enabling the model to "grow" its abilities based on a pre-trained foundation, analogous to how humans acquire new knowledge based on past experiences. There is a lack of extensive study of the continual pre-training techniques in T2V generation. In this work, we take the initial step toward exploring this task systematically and propose ModelGrow. Specifically, we break this task into two key aspects: increasing model capacity and improving semantic understanding. For model capacity, we introduce several novel techniques to expand the model size, enabling it to store new knowledge and improve generation performance. For semantic understanding, we propose a method that leverages large language models as advanced text encoders, integrating them into T2V models to enhance language comprehension and guide generation results according to detailed prompts. This approach enables the model to achieve better semantic alignment, particularly in response to complex user prompts. Extensive experiments demonstrate the effectiveness of our method across various metrics. The source code and the model of ModelGrow will be publicly available.
Abstract:Learning a robust video Variational Autoencoder (VAE) is essential for reducing video redundancy and facilitating efficient video generation. Directly applying image VAEs to individual frames in isolation can result in temporal inconsistencies and suboptimal compression rates due to a lack of temporal compression. Existing Video VAEs have begun to address temporal compression; however, they often suffer from inadequate reconstruction performance. In this paper, we present a novel and powerful video autoencoder capable of high-fidelity video encoding. First, we observe that entangling spatial and temporal compression by merely extending the image VAE to a 3D VAE can introduce motion blur and detail distortion artifacts. Thus, we propose temporal-aware spatial compression to better encode and decode the spatial information. Additionally, we integrate a lightweight motion compression model for further temporal compression. Second, we propose to leverage the textual information inherent in text-to-video datasets and incorporate text guidance into our model. This significantly enhances reconstruction quality, particularly in terms of detail preservation and temporal stability. Third, we further improve the versatility of our model through joint training on both images and videos, which not only enhances reconstruction quality but also enables the model to perform both image and video autoencoding. Extensive evaluations against strong recent baselines demonstrate the superior performance of our method. The project website can be found at~\href{https://yzxing87.github.io/vae/}{https://yzxing87.github.io/vae/}.
Abstract:With the recent advancement in large language models (LLMs), there is a growing interest in combining LLMs with multimodal learning. Previous surveys of multimodal large language models (MLLMs) mainly focus on understanding. This survey elaborates on multimodal generation across different domains, including image, video, 3D, and audio, where we highlight the notable advancements with milestone works in these fields. Specifically, we exhaustively investigate the key technical components behind methods and multimodal datasets utilized in these studies. Moreover, we dig into tool-augmented multimodal agents that can use existing generative models for human-computer interaction. Lastly, we also comprehensively discuss the advancement in AI safety and investigate emerging applications as well as future prospects. Our work provides a systematic and insightful overview of multimodal generation, which is expected to advance the development of Artificial Intelligence for Generative Content (AIGC) and world models. A curated list of all related papers can be found at https://github.com/YingqingHe/Awesome-LLMs-meet-Multimodal-Generation
Abstract:Video and audio content creation serves as the core technique for the movie industry and professional users. Recently, existing diffusion-based methods tackle video and audio generation separately, which hinders the technique transfer from academia to industry. In this work, we aim at filling the gap, with a carefully designed optimization-based framework for cross-visual-audio and joint-visual-audio generation. We observe the powerful generation ability of off-the-shelf video or audio generation models. Thus, instead of training the giant models from scratch, we propose to bridge the existing strong models with a shared latent representation space. Specifically, we propose a multimodality latent aligner with the pre-trained ImageBind model. Our latent aligner shares a similar core as the classifier guidance that guides the diffusion denoising process during inference time. Through carefully designed optimization strategy and loss functions, we show the superior performance of our method on joint video-audio generation, visual-steered audio generation, and audio-steered visual generation tasks. The project website can be found at https://yzxing87.github.io/Seeing-and-Hearing/
Abstract:Enhancing a low-light noisy RAW image into a well-exposed and clean sRGB image is a significant challenge in computational photography. Due to the limitation of large-scale paired data, prior approaches have difficulty in recovering fine details and true colors in extremely low-light regions. Meanwhile, recent advancements in generative diffusion models have shown promising generating capabilities, which inspires this work to explore generative priors from a diffusion model trained on a large-scale open-domain dataset to benefit the low-light image enhancement (LLIE) task. Based on this intention, we propose a novel diffusion-model-based LLIE method, dubbed LDM-SID. LDM-SID aims at inserting a set of proposed taming modules into a frozen pre-trained diffusion model to steer its generating process. Specifically, the taming module fed with low-light information serves to output a pair of affine transformation parameters to modulate the intermediate feature in the diffusion model. Additionally, based on the observation of dedicated generative priors across different portions of the diffusion model, we propose to apply 2D discrete wavelet transforms on the input RAW image, resulting in dividing the LLIE task into two essential parts: low-frequency content generation and high-frequency detail maintenance. This enables us to skillfully tame the diffusion model for optimized structural generation and detail enhancement. Extensive experiments demonstrate the proposed method not only achieves state-of-the-art performance in quantitative evaluations but also shows significant superiority in visual comparisons. These findings highlight the effectiveness of leveraging a pre-trained diffusion model as a generative prior to the LLIE task.
Abstract:Low dynamic range (LDR) cameras cannot deal with wide dynamic range inputs, frequently leading to local overexposure issues. We present a learning-based system to reduce these artifacts without resorting to complex acquisition mechanisms like alternating exposures or costly processing that are typical of high dynamic range (HDR) imaging. We propose a transformer-based deep neural network (DNN) to infer the missing HDR details. In an ablation study, we show the importance of using a multiscale DNN and train it with the proper cost function to achieve state-of-the-art quality. To aid the reconstruction of the overexposed areas, our DNN takes a reference frame from the past as an additional input. This leverages the commonly occurring temporal instabilities of autoexposure to our advantage: since well-exposed details in the current frame may be overexposed in the future, we use reinforcement learning to train a reference frame selection DNN that decides whether to adopt the current frame as a future reference. Without resorting to alternating exposures, we obtain therefore a causal, HDR hallucination algorithm with potential application in common video acquisition settings. Our demo video can be found at https://drive.google.com/file/d/1-r12BKImLOYCLUoPzdebnMyNjJ4Rk360/view
Abstract:Applying an image processing algorithm independently to each video frame often leads to temporal inconsistency in the resulting video. To address this issue, we present a novel and general approach for blind video temporal consistency. Our method is only trained on a pair of original and processed videos directly instead of a large dataset. Unlike most previous methods that enforce temporal consistency with optical flow, we show that temporal consistency can be achieved by training a convolutional neural network on a video with Deep Video Prior (DVP). Moreover, a carefully designed iteratively reweighted training strategy is proposed to address the challenging multimodal inconsistency problem. We demonstrate the effectiveness of our approach on 7 computer vision tasks on videos. Extensive quantitative and perceptual experiments show that our approach obtains superior performance than state-of-the-art methods on blind video temporal consistency. We further extend DVP to video propagation and demonstrate its effectiveness in propagating three different types of information (color, artistic style, and object segmentation). A progressive propagation strategy with pseudo labels is also proposed to enhance DVP's performance on video propagation. Our source codes are publicly available at https://github.com/ChenyangLEI/deep-video-prior.
Abstract:Portrait images often suffer from undesirable shadows cast by casual objects or even the face itself. While existing methods for portrait shadow removal require training on a large-scale synthetic dataset, we propose the first unsupervised method for portrait shadow removal without any training data. Our key idea is to leverage the generative facial priors embedded in the off-the-shelf pretrained StyleGAN2. To achieve this, we formulate the shadow removal task as a layer decomposition problem: a shadowed portrait image is constructed by the blending of a shadow image and a shadow-free image. We propose an effective progressive optimization algorithm to learn the decomposition process. Our approach can also be extended to portrait tattoo removal and watermark removal. Qualitative and quantitative experiments on a real-world portrait shadow dataset demonstrate that our approach achieves comparable performance with supervised shadow removal methods. Our source code is available at https://github.com/YingqingHe/Shadow-Removal-via-Generative-Priors.
Abstract:Unprocessed RAW data is a highly valuable image format for image editing and computer vision. However, since the file size of RAW data is huge, most users can only get access to processed and compressed sRGB images. To bridge this gap, we design an Invertible Image Signal Processing (InvISP) pipeline, which not only enables rendering visually appealing sRGB images but also allows recovering nearly perfect RAW data. Due to our framework's inherent reversibility, we can reconstruct realistic RAW data instead of synthesizing RAW data from sRGB images without any memory overhead. We also integrate a differentiable JPEG compression simulator that empowers our framework to reconstruct RAW data from JPEG images. Extensive quantitative and qualitative experiments on two DSLR demonstrate that our method obtains much higher quality in both rendered sRGB images and reconstructed RAW data than alternative methods.
Abstract:Applying image processing algorithms independently to each video frame often leads to temporal inconsistency in the resulting video. To address this issue, we present a novel and general approach for blind video temporal consistency. Our method is only trained on a pair of original and processed videos directly instead of a large dataset. Unlike most previous methods that enforce temporal consistency with optical flow, we show that temporal consistency can be achieved by training a convolutional network on a video with the Deep Video Prior. Moreover, a carefully designed iteratively reweighted training strategy is proposed to address the challenging multimodal inconsistency problem. We demonstrate the effectiveness of our approach on 7 computer vision tasks on videos. Extensive quantitative and perceptual experiments show that our approach obtains superior performance than state-of-the-art methods on blind video temporal consistency. Our source codes are publicly available at github.com/ChenyangLEI/deep-video-prior.