https://github.com/YingqingHe/Awesome-LLMs-meet-Multimodal-Generation
With the recent advancement in large language models (LLMs), there is a growing interest in combining LLMs with multimodal learning. Previous surveys of multimodal large language models (MLLMs) mainly focus on understanding. This survey elaborates on multimodal generation across different domains, including image, video, 3D, and audio, where we highlight the notable advancements with milestone works in these fields. Specifically, we exhaustively investigate the key technical components behind methods and multimodal datasets utilized in these studies. Moreover, we dig into tool-augmented multimodal agents that can use existing generative models for human-computer interaction. Lastly, we also comprehensively discuss the advancement in AI safety and investigate emerging applications as well as future prospects. Our work provides a systematic and insightful overview of multimodal generation, which is expected to advance the development of Artificial Intelligence for Generative Content (AIGC) and world models. A curated list of all related papers can be found at