Abstract:Accurate and timely regional weather prediction is vital for sectors dependent on weather-related decisions. Traditional prediction methods, based on atmospheric equations, often struggle with coarse temporal resolutions and inaccuracies. This paper presents a novel machine learning (ML) model, called MiMa (short for Micro-Macro), that integrates both near-surface observational data from Kentucky Mesonet stations (collected every five minutes, known as Micro data) and hourly atmospheric numerical outputs (termed as Macro data) for fine-resolution weather forecasting. The MiMa model employs an encoder-decoder transformer structure, with two encoders for processing multivariate data from both datasets and a decoder for forecasting weather variables over short time horizons. Each instance of the MiMa model, called a modelet, predicts the values of a specific weather parameter at an individual Mesonet station. The approach is extended with Re-MiMa modelets, which are designed to predict weather variables at ungauged locations by training on multivariate data from a few representative stations in a region, tagged with their elevations. Re-MiMa (short for Regional-MiMa) can provide highly accurate predictions across an entire region, even in areas without observational stations. Experimental results show that MiMa significantly outperforms current models, with Re-MiMa offering precise short-term forecasts for ungauged locations, marking a significant advancement in weather forecasting accuracy and applicability.
Abstract:Despite remarkable successes in unimodal learning tasks, backdoor attacks against cross-modal learning are still underexplored due to the limited generalization and inferior stealthiness when involving multiple modalities. Notably, since works in this area mainly inherit ideas from unimodal visual attacks, they struggle with dealing with diverse cross-modal attack circumstances and manipulating imperceptible trigger samples, which hinders their practicability in real-world applications. In this paper, we introduce a novel bilateral backdoor to fill in the missing pieces of the puzzle in the cross-modal backdoor and propose a generalized invisible backdoor framework against cross-modal learning (BadCM). Specifically, a cross-modal mining scheme is developed to capture the modality-invariant components as target poisoning areas, where well-designed trigger patterns injected into these regions can be efficiently recognized by the victim models. This strategy is adapted to different image-text cross-modal models, making our framework available to various attack scenarios. Furthermore, for generating poisoned samples of high stealthiness, we conceive modality-specific generators for visual and linguistic modalities that facilitate hiding explicit trigger patterns in modality-invariant regions. To the best of our knowledge, BadCM is the first invisible backdoor method deliberately designed for diverse cross-modal attacks within one unified framework. Comprehensive experimental evaluations on two typical applications, i.e., cross-modal retrieval and VQA, demonstrate the effectiveness and generalization of our method under multiple kinds of attack scenarios. Moreover, we show that BadCM can robustly evade existing backdoor defenses. Our code is available at https://github.com/xandery-geek/BadCM.
Abstract:Adversarial training (AT) can help improve the robustness of Vision Transformers (ViT) against adversarial attacks by intentionally injecting adversarial examples into the training data. However, this way of adversarial injection inevitably incurs standard accuracy degradation to some extent, thereby calling for a trade-off between standard accuracy and robustness. Besides, the prominent AT solutions are still vulnerable to adaptive attacks. To tackle such shortcomings, this paper proposes a novel ViT architecture, including a detector and a classifier bridged by our newly developed adaptive ensemble. Specifically, we empirically discover that detecting adversarial examples can benefit from the Guided Backpropagation technique. Driven by this discovery, a novel Multi-head Self-Attention (MSA) mechanism is introduced to enhance our detector to sniff adversarial examples. Then, a classifier with two encoders is employed for extracting visual representations respectively from clean images and adversarial examples, with our adaptive ensemble to adaptively adjust the proportion of visual representations from the two encoders for accurate classification. This design enables our ViT architecture to achieve a better trade-off between standard accuracy and robustness. Besides, our adaptive ensemble technique allows us to mask off a random subset of image patches within input data, boosting our ViT's robustness against adaptive attacks, while maintaining high standard accuracy. Experimental results exhibit that our ViT architecture, on CIFAR-10, achieves the best standard accuracy and adversarial robustness of 90.3% and 49.8%, respectively.
Abstract:Federated learning (FL) is an emerging distributed machine learning paradigm that enables collaborative training of machine learning models over decentralized devices without exposing their local data. One of the major challenges in FL is the presence of uneven data distributions across client devices, violating the well-known assumption of independent-and-identically-distributed (IID) training samples in conventional machine learning. To address the performance degradation issue incurred by such data heterogeneity, clustered federated learning (CFL) shows its promise by grouping clients into separate learning clusters based on the similarity of their local data distributions. However, state-of-the-art CFL approaches require a large number of communication rounds to learn the distribution similarities during training until the formation of clusters is stabilized. Moreover, some of these algorithms heavily rely on a predefined number of clusters, thus limiting their flexibility and adaptability. In this paper, we propose {\em FedClust}, a novel approach for CFL that leverages the correlation between local model weights and the data distribution of clients. {\em FedClust} groups clients into clusters in a one-shot manner by measuring the similarity degrees among clients based on the strategically selected partial weights of locally trained models. We conduct extensive experiments on four benchmark datasets with different non-IID data settings. Experimental results demonstrate that {\em FedClust} achieves higher model accuracy up to $\sim$45\% as well as faster convergence with a significantly reduced communication cost up to 2.7$\times$ compared to its state-of-the-art counterparts.
Abstract:Precise crop yield predictions are of national importance for ensuring food security and sustainable agricultural practices. While AI-for-science approaches have exhibited promising achievements in solving many scientific problems such as drug discovery, precipitation nowcasting, etc., the development of deep learning models for predicting crop yields is constantly hindered by the lack of an open and large-scale deep learning-ready dataset with multiple modalities to accommodate sufficient information. To remedy this, we introduce the CropNet dataset, the first terabyte-sized, publicly available, and multi-modal dataset specifically targeting climate change-aware crop yield predictions for the contiguous United States (U.S.) continent at the county level. Our CropNet dataset is composed of three modalities of data, i.e., Sentinel-2 Imagery, WRF-HRRR Computed Dataset, and USDA Crop Dataset, for over 2200 U.S. counties spanning 6 years (2017-2022), expected to facilitate researchers in developing versatile deep learning models for timely and precisely predicting crop yields at the county-level, by accounting for the effects of both short-term growing season weather variations and long-term climate change on crop yields. Besides, we develop the CropNet package, offering three types of APIs, for facilitating researchers in downloading the CropNet data on the fly over the time and region of interest, and flexibly building their deep learning models for accurate crop yield predictions. Extensive experiments have been conducted on our CropNet dataset via employing various types of deep learning solutions, with the results validating the general applicability and the efficacy of the CropNet dataset in climate change-aware crop yield predictions.
Abstract:Anomaly detection (such as telecom fraud detection and medical image detection) has attracted the increasing attention of people. The complex interaction between multiple entities widely exists in the network, which can reflect specific human behavior patterns. Such patterns can be modeled by higher-order network structures, thus benefiting anomaly detection on attributed networks. However, due to the lack of an effective mechanism in most existing graph learning methods, these complex interaction patterns fail to be applied in detecting anomalies, hindering the progress of anomaly detection to some extent. In order to address the aforementioned issue, we present a higher-order structure based anomaly detection (GUIDE) method. We exploit attribute autoencoder and structure autoencoder to reconstruct node attributes and higher-order structures, respectively. Moreover, we design a graph attention layer to evaluate the significance of neighbors to nodes through their higher-order structure differences. Finally, we leverage node attribute and higher-order structure reconstruction errors to find anomalies. Extensive experiments on five real-world datasets (i.e., ACM, Citation, Cora, DBLP, and Pubmed) are implemented to verify the effectiveness of GUIDE. Experimental results in terms of ROC-AUC, PR-AUC, and Recall@K show that GUIDE significantly outperforms the state-of-art methods.
Abstract:Federated learning (FL) is an emerging distributed machine learning paradigm enabling collaborative model training on decentralized devices without exposing their local data. A key challenge in FL is the uneven data distribution across client devices, violating the well-known assumption of independent-and-identically-distributed (IID) training samples in conventional machine learning. Clustered federated learning (CFL) addresses this challenge by grouping clients based on the similarity of their data distributions. However, existing CFL approaches require a large number of communication rounds for stable cluster formation and rely on a predefined number of clusters, thus limiting their flexibility and adaptability. This paper proposes FedClust, a novel CFL approach leveraging correlations between local model weights and client data distributions. FedClust groups clients into clusters in a one-shot manner using strategically selected partial model weights and dynamically accommodates newcomers in real-time. Experimental results demonstrate FedClust outperforms baseline approaches in terms of accuracy and communication costs.
Abstract:Deep hashing has been intensively studied and successfully applied in large-scale image retrieval systems due to its efficiency and effectiveness. Recent studies have recognized that the existence of adversarial examples poses a security threat to deep hashing models, that is, adversarial vulnerability. Notably, it is challenging to efficiently distill reliable semantic representatives for deep hashing to guide adversarial learning, and thereby it hinders the enhancement of adversarial robustness of deep hashing-based retrieval models. Moreover, current researches on adversarial training for deep hashing are hard to be formalized into a unified minimax structure. In this paper, we explore Semantic-Aware Adversarial Training (SAAT) for improving the adversarial robustness of deep hashing models. Specifically, we conceive a discriminative mainstay features learning (DMFL) scheme to construct semantic representatives for guiding adversarial learning in deep hashing. Particularly, our DMFL with the strict theoretical guarantee is adaptively optimized in a discriminative learning manner, where both discriminative and semantic properties are jointly considered. Moreover, adversarial examples are fabricated by maximizing the Hamming distance between the hash codes of adversarial samples and mainstay features, the efficacy of which is validated in the adversarial attack trials. Further, we, for the first time, formulate the formalized adversarial training of deep hashing into a unified minimax optimization under the guidance of the generated mainstay codes. Extensive experiments on benchmark datasets show superb attack performance against the state-of-the-art algorithms, meanwhile, the proposed adversarial training can effectively eliminate adversarial perturbations for trustworthy deep hashing-based retrieval. Our code is available at https://github.com/xandery-geek/SAAT.
Abstract:Precise crop yield prediction provides valuable information for agricultural planning and decision-making processes. However, timely predicting crop yields remains challenging as crop growth is sensitive to growing season weather variation and climate change. In this work, we develop a deep learning-based solution, namely Multi-Modal Spatial-Temporal Vision Transformer (MMST-ViT), for predicting crop yields at the county level across the United States, by considering the effects of short-term meteorological variations during the growing season and the long-term climate change on crops. Specifically, our MMST-ViT consists of a Multi-Modal Transformer, a Spatial Transformer, and a Temporal Transformer. The Multi-Modal Transformer leverages both visual remote sensing data and short-term meteorological data for modeling the effect of growing season weather variations on crop growth. The Spatial Transformer learns the high-resolution spatial dependency among counties for accurate agricultural tracking. The Temporal Transformer captures the long-range temporal dependency for learning the impact of long-term climate change on crops. Meanwhile, we also devise a novel multi-modal contrastive learning technique to pre-train our model without extensive human supervision. Hence, our MMST-ViT captures the impacts of both short-term weather variations and long-term climate change on crops by leveraging both satellite images and meteorological data. We have conducted extensive experiments on over 200 counties in the United States, with the experimental results exhibiting that our MMST-ViT outperforms its counterparts under three performance metrics of interest.
Abstract:Federated learning (FL) has been widely deployed to enable machine learning training on sensitive data across distributed devices. However, the decentralized learning paradigm and heterogeneity of FL further extend the attack surface for backdoor attacks. Existing FL attack and defense methodologies typically focus on the whole model. None of them recognizes the existence of backdoor-critical (BC) layers-a small subset of layers that dominate the model vulnerabilities. Attacking the BC layers achieves equivalent effects as attacking the whole model but at a far smaller chance of being detected by state-of-the-art (SOTA) defenses. This paper proposes a general in-situ approach that identifies and verifies BC layers from the perspective of attackers. Based on the identified BC layers, we carefully craft a new backdoor attack methodology that adaptively seeks a fundamental balance between attacking effects and stealthiness under various defense strategies. Extensive experiments show that our BC layer-aware backdoor attacks can successfully backdoor FL under seven SOTA defenses with only 10% malicious clients and outperform the latest backdoor attack methods.