Abstract:Vision-Language Models (VLMs) are a significant technique for Artificial General Intelligence (AGI). With the fast growth of AGI, the security problem become one of the most important challenges for VLMs. In this paper, through extensive experiments, we demonstrate the vulnerability of the conventional adaptation methods for VLMs, which may bring significant security risks. In addition, as the size of the VLMs increases, performing conventional adversarial adaptation techniques on VLMs results in high computational costs. To solve these problems, we propose a parameter-efficient \underline{Adv}ersarial adaptation method named \underline{AdvLoRA} by \underline{Lo}w-\underline{R}ank \underline{A}daptation. At first, we investigate and reveal the intrinsic low-rank property during the adversarial adaptation for VLMs. Different from LoRA, we improve the efficiency and robustness of adversarial adaptation by designing a novel reparameterizing method based on parameter clustering and parameter alignment. In addition, an adaptive parameter update strategy is proposed to further improve the robustness. By these settings, our proposed AdvLoRA alleviates the model security and high resource waste problems. Extensive experiments demonstrate the effectiveness and efficiency of the AdvLoRA.
Abstract:For the aerial manipulator that performs aerial work tasks, the actual operating environment it faces is very complex, and it is affected by internal and external multi-source disturbances. In this paper, to effectively improve the anti-disturbance control performance of the aerial manipulator, an adaptive neural network backstepping control method based on variable inertia parameter modeling is proposed. Firstly, for the intense internal coupling disturbance, we analyze and model it from the perspective of the generation mechanism of the coupling disturbance, and derive the dynamics model of the aerial manipulator system and the coupling disturbance model based on the variable inertia parameters. Through the proposed coupling disturbance model, we can compensate the strong coupling disturbance in a way of feedforward. Then, the adaptive neural network is proposed and applid to estimate and compensate the additional disturbances, and the closed-loop controller is designed based on the backstepping control method. Finally, we verify the correctness of the proposed coupling disturbance model through physical experiment under a large range motion of the manipulator. Two sets of comparative simulation results also prove the accurate estimation of the proposed adaptive neural network for additional disturbances and the effectiveness and superiority of the proposed control method.
Abstract:Causal learning has attracted much attention in recent years because causality reveals the essential relationship between things and indicates how the world progresses. However, there are many problems and bottlenecks in traditional causal learning methods, such as high-dimensional unstructured variables, combinatorial optimization problems, unknown intervention, unobserved confounders, selection bias and estimation bias. Deep causal learning, that is, causal learning based on deep neural networks, brings new insights for addressing these problems. While many deep learning-based causal discovery and causal inference methods have been proposed, there is a lack of reviews exploring the internal mechanism of deep learning to improve causal learning. In this article, we comprehensively review how deep learning can contribute to causal learning by addressing conventional challenges from three aspects: representation, discovery, and inference. We point out that deep causal learning is important for the theoretical extension and application expansion of causal science and is also an indispensable part of general artificial intelligence. We conclude the article with a summary of open issues and potential directions for future work.
Abstract:Cross-Technology Communication (CTC) is an emerging technology to support direct communication between wireless devices that follow different standards. In spite of the many different proposals from the community to enable CTC, the performance aspect of CTC is an equally important problem but has seldom been studied before. We find this problem is extremely challenging, due to the following reasons: on one hand, a link for CTC is essentially different from a conventional wireless link. The conventional link indicators like RSSI (received signal strength indicator) and SNR (signal to noise ratio) cannot be used to directly characterize a CTC link. On the other hand, the indirect indicators like PER (packet error rate), which is adopted by many existing CTC proposals, cannot capture the short-term link behavior. As a result, the existing CTC proposals fail to keep reliable performance under dynamic channel conditions. In order to address the above challenge, we in this paper propose AdaComm, a generic framework to achieve self-adaptive CTC in dynamic channels. Instead of reactively adjusting the CTC sender, AdaComm adopts online learning mechanism to adaptively adjust the decoding model at the CTC receiver. The self-adaptive decoding model automatically learns the effective features directly from the raw received signals that are embedded with the current channel state. With the lossless channel information, AdaComm further adopts the fine tuning and full training modes to cope with the continuous and abrupt channel dynamics. We implement AdaComm and integrate it with two existing CTC approaches that respectively employ CSI (channel state information) and RSSI as the information carrier. The evaluation results demonstrate that AdaComm can significantly reduce the SER (symbol error rate) by 72.9% and 49.2%, respectively, compared with the existing approaches.
Abstract:Multi-task optimization (MTO) studies how to simultaneously solve multiple optimization problems for the purpose of obtaining better performance on each problem. Over the past few years, evolutionary MTO (EMTO) was proposed to handle MTO problems via evolutionary algorithms. So far, many EMTO algorithms have been developed and demonstrated well performance on solving real-world problems. However, there remain many works to do in adapting knowledge transfer to task relatedness in EMTO. Different from the existing works, we develop a self-adaptive multi-task particle swarm optimization (SaMTPSO) through the developed knowledge transfer adaptation strategy, the focus search strategy and the knowledge incorporation strategy. In the knowledge transfer adaptation strategy, each task has a knowledge source pool that consists of all knowledge sources. Each source (task) outputs knowledge to the task. And knowledge transfer adapts to task relatedness via individuals' choice on different sources of a pool, where the chosen probabilities for different sources are computed respectively according to task's success rate in generating improved solutions via these sources. In the focus search strategy, if there is no knowledge source benefit the optimization of a task, then all knowledge sources in the task's pool are forbidden to be utilized except the task, which helps to improve the performance of the proposed algorithm. Note that the task itself is as a knowledge source of its own. In the knowledge incorporation strategy, two different forms are developed to help the SaMTPSO explore and exploit the transferred knowledge from a chosen source, each leading to a version of the SaMTPSO. Several experiments are conducted on two test suites. The results of the SaMTPSO are comparing to that of 3 popular EMTO algorithms and a particle swarm algorithm, which demonstrates the superiority of the SaMTPSO.